Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


One-Zero Loop Filter

If we relax the constraint that $ N_{\hat g}$ be odd, then the simplest case becomes the one-zero digital filter:

$\displaystyle {\hat G}(z) = {\hat g}(0) + {\hat g}(1) z^{-1}
$

When $ {\hat g}(0)={\hat g}(1)$, the filter is linear phase, and its phase delay and group delay are equal to $ 1/2$ sample [340]. In practice, the half-sample delay must be compensated elsewhere in the filtered delay loop, such as in the delay-line interpolation filter [194]. Normalizing the dc gain to unity removes the last degree of freedom so that $ {\hat g}(0) = {\hat g}(1) = 1/2$, and $ {\hat G}(e^{j\omega T}) = \cos\left({\omega T/ 2}\right),\,\left\vert\omega\right\vert\leq \pi f_s$.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]