Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Feedback Comb Filter Amplitude Response

Figure 1.20 shows a family of feedback-comb-filter amplitude responses, obtained using a selection of feedback coefficients.

Figure 1.20: Amplitude response of the feedback comb-filter $ H(z) = 1/(1-g z^{-M})$ (Fig. 1.18 with $ b_0=1$ and $ -a_M=g$) with $ M=5$ and $ g=0.1$, $ 0.5$, and $ 0.9$. a) Linear amplitude scale. b) Decibel scale.
\includegraphics[width=5in]{eps/fbcfar}

Figure 1.21 shows a similar family obtained using negated feedback coefficients; the opposite sign of the feedback exchanges the peaks and valleys in the amplitude response.

Figure 1.21: Amplitude response of the phase-inverted feedback comb-filter, i.e., as in Fig. 1.20 with negated $ g=-0.1$, $ -0.5$, and $ -0.9$. a) Linear amplitude scale. b) Decibel scale.
\includegraphics[width=5in]{eps/fbcfiar}

As introduced in §1.6.2 above, a class of feedback comb filters can be defined as any difference equation of the form

$\displaystyle y(n) = x(n) + g\,y(n-M).
$

Taking the z transform of both sides and solving for $ H(z)\isdef Y(z)/X(z)$, the transfer function of the feedback comb filter is found to be

$\displaystyle H(z) = \frac{1}{1-g\,z^{-M}}, \protect$ (2.5)

so that the amplitude response is

$\displaystyle G(\omega) \isdef \left\vert H(e^{j\omega})\right\vert = \frac{1}{\left\vert 1 - g e^{-j\omega M}\right\vert}, \quad
-\pi \leq \omega \leq \pi .
$

This is plotted in Fig. 1.20 for $ M=5$ and $ g=0.1$, $ 0.5$, and $ 0.9$. Figure 1.21 shows the same case but with the feedback sign-inverted.

For $ g=1$, the feedback-comb amplitude response reduces to

$\displaystyle G(\omega) = \frac{1}{2\left\vert\sin(\omega M/2)\right\vert},
$

and for $ g=-1$ to

$\displaystyle G(\omega) = \frac{1}{2\left\vert\cos(\omega M/2)\right\vert},
$

which exactly inverts the amplitude response of the feedforward comb filter with gain $ g=1$ (Eq. (1.4)).

Note that $ g>0$ produces resonant peaks at

$\displaystyle \omega_k = 2\pi\frac{k}{M}, \quad k=0,1,2,\dots,M-1,
$

while for $ g<0$, the peaks occur midway between these values.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]