Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Exponentially Decaying Traveling Waves

Let $ g(r,\omega)$ denote the decay factor associated with propagation of a plane wave over distance $ r$ at frequency $ \omega $ rad/sec. For an ideal plane wave, there is no ``spreading loss'' (attenuation by $ 1/r$). Under uniform conditions, the amount of attenuation (in dB) is proportional to the distance traveled; in other words, the attenuation factors for two successive segments of a propagation path are multiplicative:

$\displaystyle g(r_1+r_2,\omega) =
g(r_1,\omega)g(r_2,\omega)
$

This property implies that $ g$ is an exponential function of distance $ r$.2.3

Frequency-independent air absorption is easily modeled in an acoustic simulation by making the substitution

$\displaystyle z^{-1}\leftarrow gz^{-1}
$

in the transfer function of the simulating delay line, where $ g$ denotes the attenuation associated with propagation during one sampling period ($ T$ seconds). Thus, to simulate absorption corresponding to an $ M$-sample delay, the difference equation Eq. (1.1) on page [*] becomes

$\displaystyle y(n) = g^Mx(n-M),
$

as depicted in Fig. 1.8.

More generally, frequency-dependent air absorption can be modeled using the substitution

$\displaystyle z^{-1}\leftarrow G(z)z^{-1}
$

where $ G(z)$ denotes the filtering per sample in the propagation medium. Since air absorption cannot amplify a wave at any frequency, we have $ \left \vert G(e^{j\omega T})\right \vert\leq 1$. A lossy delay line for plane-wave simulation is thus described by

$\displaystyle Y(z) = G^M(z) z^{-M}X(z)
$

in the frequency domain, and

$\displaystyle y(n) = \underbrace{g\ast g\ast \dots \ast g \, \ast }_{\hbox{$M$\ times}} x(n-M)
$

in the time domain, where `$ \ast $' denotes convolution, and $ g(n)$ is the impulse response of the per-sample loss filter $ G(z)$.

For spherical waves, the loss due to spherical spreading is of the form

$\displaystyle Y(z) \propto \frac{G^M(z) z^{-M}}{r}X(z)
$

where $ r$ is the distance from $ X$ to $ Y$. We see that the spherical spreading loss factor is ``hyperbolic'' in the propagation distance $ r$, while air absorption is exponential in $ r$.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]