Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Doppler Effect

The Doppler effect causes the pitch of a sound source to appear to rise or fall due to motion of the source and/or listener relative to each other. You have probably heard the pitch of a horn drop lower as it passes by (e.g., from a moving train). As a pitched sound-source moves toward you, the pitch you hear is raised; as it moves away from you, the pitch is lowered. The Doppler effect has been used to enhance the realism of simulated moving sound sources for compositional purposes [75], and it is an important component of the ``Leslie effect'' (described in §3.4.9).

As derived in elementary physics texts, the Doppler shift is given by

$\displaystyle \omega_l = \omega_s \frac{1+\frac{v_{ls}}{c}}{1-\frac{v_{s,l}}{c}} \protect$ (4.6)

where $ \omega_s $ is the radian frequency emitted by the source at rest, $ \omega_l $ is the frequency received by the listener, $ v_{ls}$ denotes the speed of the listener relative to the propagation medium in the direction of the source, $ v_{s,l}$ denotes the speed of the source relative to the propagation medium in the direction of the listener, and $ c$ denotes sound speed. Note that all quantities in this formula are scalars.



Subsections
Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]