Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


2D Mesh and the Wave Equation

Figure G.26: Region of nodes in a rectilinear waveguide mesh.
\begin{figure}\input fig/mesh.pstex_t
\end{figure}

Figure G.27: Zoom-in about node $ (l,m)$ at time $ n$ in a rectilinear waveguide mesh, showing traveling-wave components entering and leaving the node. (All variables are at time $ n$,)
\begin{figure}\input fig/meshzoom.pstex_t
\end{figure}

Consider the 2D rectilinear mesh, with nodes at positions $ x=lX$ and $ y=mY$, where $ l$ and $ m$ are integers, and $ X$ and $ Y$ denote the spatial sampling intervals along $ x$ and $ y$, respectively (see Fig. G.26). Then from Eq. (G.89) the junction velocity $ v_{lm}$ at time $ n$ is given by

$\displaystyle v_{lm}(n) =
\frac{1}{2}\left[
v_{lm}^{+\textsc{n}}(n) +
v_{lm}^{+\textsc{e}}(n) +
v_{lm}^{+\textsc{s}}(n) +
v_{lm}^{+\textsc{w}}(n)\right]
$

where $ v_{lm}^{+\textsc{n}}(n)$ is the ``incoming wave from the north'' to node $ (l,m)$, and similarly for the waves coming from east, west, and south (see Fig. G.27).

These incoming traveling-wave components arrive from the four neighboring nodes after a one-sample propagation delay. For example, $ v_{lm}^{+\textsc{n}}(n)$, arriving from the north, departed from node $ (l,m+1)$ at time $ n-1$, as $ v_{l,m+1}^{-\textsc{s}}(n-1)$. Furthermore, the outgoing components at time $ n$ will arrive at the neighboring nodes one sample in the future at time $ n+1$. For example, $ v_{lm}^{-\textsc{n}}(n)$ will become $ v_{l,m+1}^{+\textsc{s}}(n+1)$. Using these relations, we can write $ v_{lm}(n+1)$ in terms of the four outgoing waves from its neighbors at time $ n$:

$\displaystyle v_{lm}(n+1) = \frac{1}{2}\left[ v_{l,m+1}^{-\textsc{s}}(n) + v_{l...
...}}(n) + v_{l,m-1}^{-\textsc{n}}(n) + v_{l-1,m}^{-\textsc{e}}(n)\right] \protect$ (G.100)

where, for instance, $ v_{lm}^{-\textsc{n}}(n)$ is the ``outgoing wave to the north'' from node $ (l,m)$. Similarly, the outgoing waves leaving $ v_{lm}(n-1)$ become the incoming traveling-wave components of its neighbors at time $ n$:

$\displaystyle v_{lm}(n-1) = \frac{1}{2}\left[ v_{l,m+1}^{+\textsc{s}}(n) + v_{l...
...}}(n) + v_{l,m-1}^{+\textsc{n}}(n) + v_{l-1,m}^{+\textsc{e}}(n)\right] \protect$ (G.101)

This may be shown in detail by writing

\begin{eqnarray*}
v_{lm}(n-1)
&=& \frac{1}{2}[v_{lm}^{+\textsc{n}}(n-1) + \cdot...
... v_{lm}^{-\textsc{n}}(n-1) - \cdots - v_{lm}^{-\textsc{w}}(n-1)]
\end{eqnarray*}

so that

\begin{eqnarray*}
v_{lm}(n-1)
&=& \frac{1}{2}[v_{lm}^{-\textsc{n}}(n-1) + \cdot...
...
v_{l,m-1}^{+\textsc{n}}(n) +
v_{l-1,m}^{+\textsc{e}}(n)\right].
\end{eqnarray*}

Adding Equations (G.100-G.100), replacing terms such as $ v_{l,m+1}^{+\textsc{s}}(n) + v_{l,m+1}^{-\textsc{s}}(n)$ with $ v_{l,m+1}(n)$, yields a finite difference equation in terms of physical node velocities:

\begin{eqnarray*}
\lefteqn{v_{lm}(n+1) + v_{lm}(n-1) = } \\
& & \frac{1}{2}\left[
v_{l,m+1}(n) +
v_{l+1,m}(n) +
v_{l,m-1}(n) +
v_{l-1,m}(n)\right]
\end{eqnarray*}

Thus, the rectangular waveguide mesh satisfies this difference equation giving a formula for the velocity at node $ (l,m)$, in terms of the velocity at its neighboring nodes one sample earlier, and itself two samples earlier. Subtracting $ 2v_{lm}(n)$ from both sides yields

\begin{eqnarray*}
\lefteqn{v_{lm}(n+1) - 2 v_{lm}(n) + v_{lm}(n-1)} \\
&=& \fra...
.... \left[v_{l+1,m}(n) - 2 v_{lm}(n) + v_{l-1,m}(n)\right]\right\}
\end{eqnarray*}

Dividing by the respective sampling intervals, and assuming $ X=Y$ (square mesh holes), we obtain

\begin{eqnarray*}
\lefteqn{\frac{v_{lm}(n+1) - 2 v_{lm}(n) + v_{lm}(n-1)}{T^2}} ...
...ft.\frac{v_{l+1,m}(n) - 2 v_{lm}(n) + v_{l-1,m}(n)}{X^2}\right].
\end{eqnarray*}

In the limit, as $ X=Y$ and $ T$ approach zero, maintaining their original ratio, we recognize these expressions as the definitions of the partial derivatives with respect to $ t$, $ x$, and $ y$, respectively, yielding

$\displaystyle \frac{\partial^2 v(t,x,y)}{\partial t^2} = \frac{X^2}{2T^2}
\left...
...^2 v(t,x,y)}{\partial x^2}
+ \frac{\partial^2 v(t,x,y)}{\partial y^2}
\right].
$

This final result is the ideal 2D wave equation $ \ddot v = c^2 \nabla^2 v$, i.e.,

$\displaystyle \frac{\partial^2 v}{\partial t^2} =
c^2
\left[
\frac{\partial^2 v}{\partial x^2}
+ \frac{\partial^2 v}{\partial y^2}
\right]
$

with

$\displaystyle c = \frac{1}{\sqrt{2}}\frac{X}{T} = \frac{\sqrt{2}}{2}\frac{X}{T}. \protect$ (G.102)

Interpreting this value for the wave propagation speed $ c$, we see that every two time steps of $ 2T$ seconds corresponds to a spatial step of $ \sqrt{2}X$ meters. This is the distance from one diagonal to the next in the square-hole mesh. We will show later that diagonal directions on the mesh support exact propagation (of plane waves traveling at 45-degree angles with respect to the $ x$ or $ y$ axes). In the $ x$ and $ y$ directions, propagation is highly dispersive, meaning that different frequencies travel at different speeds. The exactness of 45-degree angles can be appreciated by considering Huygens' principle on the mesh.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]