Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Recent Developments

An interesting approach to dispersion compensation is based on frequency-warping the signals going into the mesh [370]. Frequency warping can be used to compensate frequency-dependent dispersion, but it does not address angle-dependent dispersion. Therefore, frequency-warping is used in conjunction with an isotropic mesh.

The 3D waveguide mesh [488,492,370] is seeing more use for efficient simulation of acoustic spaces [368,171]. It has also been applied to statistical modeling of violin body resonators in [187,186,404], in which the digital waveguide mesh was used to efficiently model only the ``reverberant'' aspects of a violin body's impulse response in statistically matched fashion (but close to perceptually equivalent). The ``instantaneous'' filtering by the violin body is therefore modeled using a separate equalizer capturing the important low-frequency body and air modes explicitly. A unified view of the digital waveguide mesh and wave digital filtersN.1) as particular classes of energy invariant finite difference schemes (Appendix L) appears in [49]. The problem of modeling diffusion at a mesh boundary was addressed in [252], and maximally diffusing boundaries, using quadratic residue sequences, was investigated in [263]; an introduction to this topic is given in §G.12.6 below.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite and copy this work] 
``Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio Effects'', by Julius O. Smith III, (December 2005 Edition).
Copyright © 2006-07-01 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]