Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Examples

For a uniform sphere, the cross-terms disappear and the moments of inertia are all the same, leaving $ \tau_i=I\omega_i$ , for $ i=1,2,3$ . Since any three orthogonal vectors can serve as eigenvectors of the moment of inertia tensor, we have that, for a uniform sphere, any three orthogonal axes can be chosen as principal axes.

For a cylinder that is not spinning about its axis, we similarly obtain two uncoupled equations $ \tau_i=I\omega_i$ , for $ i=1,2$ , given $ \omega_3=\tau_3=0$ (no spin). Note, however, that if we replace the circular cross-section of the cylinder by an ellipse, then $ I_1\ne I_2$ and there is a coupling term that drives $ \dot{\omega}_3$ (unless $ \tau_3$ happens to cancel it).


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Physical Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2010, ISBN 978-0-9745607-2-4
Copyright © 2024-06-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA