Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

The Exponent Zero

How should we define $ a^0$ in a manner consistent with the properties of integer exponents? Multiplying it by $ a$ gives

$\displaystyle a^0 a = a^0 a^1 = a^{0+1} = a^1 = a
$

by property (1) of exponents. Solving $ a^0 a = a$ for $ a^0$ then gives

$\displaystyle \zbox {a^0 = 1.}
$


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Mathematics of the Discrete Fourier Transform (DFT), with Audio Applications --- Second Edition'', by Julius O. Smith III, W3K Publishing, 2007, ISBN 978-0-9745607-4-8.
Copyright © 2014-04-06 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA