Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Geometric Series

The essence of the situation can be illustrated using a simple geometric series. Let $ R$ be any real (or complex) number. Then we have

$\displaystyle \frac{1}{1-R} \eqsp 1 + R + R^2 + R^3 + \cdots \quad < \infty$   when$\displaystyle \quad\vert R\vert<1.
$

In other words, the geometric series $ 1 + R + R^2 + R^3 + \cdots$ is guaranteed to be summable when $ \vert R\vert<1$ , and in that case, the sum is given by $ 1/(1-R)$ . On the other hand, if $ \vert R\vert>1$ , we can rewrite $ 1/(1-R)$ as $ -R^{-1}/(1-R^{-1})$ to obtain

$\displaystyle \frac{1}{1-R} \eqsp \frac{-R^{-1}}{1-R^{-1}}
\eqsp -R^{-1}\left[1 + R^{-1} + R^{-2} + R^{-3} + \cdots \right]
$

which is summable when $ \vert R\vert>1$ . Thus, $ 1/(1-R)$ is a valid closed-form sum whether or not $ \vert R\vert$ is less than or greater than 1. When $ \vert R\vert<1$ , it is the sum of the causal geometric series in powers of $ R$ . When $ \vert R\vert>1$ , it is the sum of the causal geometric series in powers of $ R^{-1}$ , or, an anticausal geometric series in (negative) powers of $ R$ .


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition).
Copyright © 2015-01-15 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA