Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Triangle Difference Inequality

A useful variation on the triangle inequality is that the length of any side of a triangle is greater than the absolute difference of the lengths of the other two sides:

$\displaystyle \zbox {\Vert\underline{u}-\underline{v}\Vert \geq \left\vert\Vert\underline{u}\Vert - \Vert\underline{v}\Vert\right\vert}
$



Proof: By the triangle inequality,

\begin{eqnarray*}
\Vert\underline{v}+ (\underline{u}-\underline{v})\Vert &\leq & \Vert\underline{v}\Vert + \Vert\underline{u}-\underline{v}\Vert \\
\,\,\Rightarrow\,\,\Vert\underline{u}-\underline{v}\Vert &\geq& \Vert\underline{u}\Vert - \Vert\underline{v}\Vert.
\end{eqnarray*}

Interchanging $ \underline{u}$ and $ \underline{v}$ establishes the absolute value on the right-hand side.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Mathematics of the Discrete Fourier Transform (DFT), with Audio Applications --- Second Edition'', by Julius O. Smith III, W3K Publishing, 2007, ISBN 978-0-9745607-4-8
Copyright © 2024-04-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA