next Index
previous Conclusion
Contents Doc Top  |  Global Contents  |  Global Index |  JOS Home  | Search
Global_index Index

Bibliography

1
F. Avanzini, S. Serafin, and D. Rocchesso, ``Modeling interactions between rubbed dry surfaces using an elasto-plastic friction model,'' in Proceedings of the COST-G6 Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, pp. 111-116, September 2002,
http: //www.dafx.de/.

2
E. Barbour, ``The cool sound of tubes,'' IEEE Spectrum, pp. 24-35, August 1998.

3
M. J. Beeson and D. T. Murphy, ``RoomWeaver: A digital waveguide mesh based room acoustics research tool,'' in Proceedings of the Conference on Digital Audio Effects (DAFx-04), Naples, Italy, Oct. 2004.

4
A. H. Benade, Fundamentals of Musical Acoustics,
New York: Dover, 1990.

5
J. Bensa, Analysis and Synthesis of Piano Sounds using Physical and Signal Models,
PhD thesis, Université de la Méditérranée, Marseille, France, 2003,
http: //www.lma.cnrs-mrs.fr/~bensa/.

6
J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith, ``The simulation of piano string vibration: from physical models to finite difference schemes and digital waveguides,'' Journal of the Acoustical Society of America, vol. 114(2), pp. 1095-1107, 2003.

7
J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. Smith, ``Computational modeling of stiff piano strings using digital waveguides and finite differences,'' EURASIP Journal on Applied Signal Processing, vol. 4, 2004,
(special issue on string modeling), in review.

8
A. Chaigne, ``On the use of finite differences for musical synthesis. application to plucked stringed instruments,'' Journal d'Acoustique, vol. 5, no. 2, pp. 181-211, 1992.

9
A. Chaigne and A. Askenfelt, ``Numerical simulations of piano strings. I. a physical model for a struck string using finite difference methods,'' Journal of the Acoustical Society of America, vol. 95, no. 2, pp. 1112-1118, 1994.

10
A. Chaigne and A. Askenfelt, ``Numerical simulations of piano strings, parts I and II,'' Journal of the Acoustical Society of America, vol. 95, pp. 1112-1118, 1631-1640, Feb.-March 1994.

11
P. Cook and G. Scavone, Synthesis ToolKit in C++, Version 4.0,
http: //ccrma.stanford.edu/ccrma/Software/STK/, March 2002.

12
P. R. Cook, Identification of Control Parameters in an Articulatory Vocal Tract Model, with Applications to the Synthesis of Singing,
PhD thesis, Elec. Engineering Dept., Stanford University (CCRMA), Dec. 1990,
http: //www.cs.princeton.edu/~prc/.

13
P. R. Cook, ``A meta-wind-instrument physical model, and a meta-controller for real time performance control,'' in Proceedings of the 1992 International Computer Music Conference, San Jose, pp. 273-276, Computer Music Association, 1992.

14
P. R. Cook, ``Synthesis toolkit in C++, version 1.0,'' in SIGGRAPH Proceedings, Assoc. Comp. Mach., May 1996,
see http: //www.cs.princeton.edu/~prc/NewWork.html for a copy of this paper. The Synthesis Tool Kit (STK) software itself is distributed by CCRMA: http: //ccrma.stanford.edu/ccrma/Software/STK/.

15
P. R. Cook, Real Sound Synthesis for Interactive Applications,
A. K. Peters, L.T.D., 2002.

16
J. l. R. d'Alembert, ``Investigation of the curve formed by a vibrating string, 1747,'' in Acoustics: Historical and Philosophical Development (R. B. Lindsay, ed.), pp. 119-123, Stroudsburg: Dowden, Hutchinson & Ross, 1973.

17
G. Derveaux, A. Chaigne, P. Joly, and E. Bécache, ``Time-domain simulation of a guitar: Model and method,'' Journal of the Acoustical Society of America, vol. 114, pp. 3368-3383, Dec. 2003.

18
C. Erkut and M. Karjalainen, ``Finite Difference Method vs. Digital Waveguide Method in String Instrument Modeling and Synthesis,'' in International Symposium on Musical Acoustics, (Mexico City, Mexico), December 2002.

19
C. Erkut, M. Karjalainen, P. Huang, and V. Välimäki, ``Acoustical analysis and model-based sound synthesis of the kantele,'' Journal of the Acoustical Society of America, vol. 112, pp. 1681-1691, October 2002.

20
N. H. Fletcher and T. D. Rossing, The Physics of Musical Instruments, Second Edition,
New York: Springer Verlag, 1998.

21
F. Fontana and D. Rocchesso, ``Physical modeling of membranes for percussion instruments,'' Acta Acustica, vol. 84, pp. 529-542, May/June 1998.

22
B. Fornberg, A Practical Guide to Pseudo-Spectral Methods,
Cambridge University Press, 1998.

23
A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U. K. Laine, and J. Huopaniemi, ``Frequency-warped signal processing for audio applications,'' Journal of the Audio Engineering Society, vol. 48, pp. 1011-1031, November 2000.

24
L. Hiller and P. Ruiz, ``Synthesizing musical sounds by solving the wave equation for vibrating objects. Part I.,'' Journal of the Audio Engineering Society, vol. 19, pp. 462-470, June 1971,
Part II: vol. 19, no. 7, pp. 542-551, July/Aug. 1971.

25
A. Hirschberg, ``Aero-acoustics of wind instruments,'' in Mechanics of Musical Instruments (A. Hirschberg, J. Kergomard, and G. Weinreich, eds.), pp. 291-361, Berlin: Springer-Verlag, 1995.

26
A. Horner, J. Beauchamp, and L. Haken, ``Methods for multiple wavetable synthesis of musical instrument tones,'' Journal of the Audio Engineering Society, vol. 41, pp. 336-356, May 1993.

27
H. Järveläinen, V. Välimäki, and M. Karjalainen, ``Audibility of inharmonicity in string instrument sounds, and implications to digital sound synthesis,'' in Proceedings of the 1999 International Computer Music Conference, Beijing, pp. 359-362, Oct. 22-27, 1999,
http: //www.acoustics.hut.fi/~hjarvela/publications/.

28
M. Karjalainen, ``Mixed physical modeling: DWG + FDTD + WDF,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), pp. 225-228, IEEE Press, Oct. 2003.

29
M. Karjalainen and C. Erkut, ``Digital waveguides vs. finite difference schemes: Equivalance and mixed modeling,'' EURASIP Journal on Applied Signal Processing, vol. 2004, pp. 978-989, June 15, 2004.

30
M. Karjalainen, J. Backman, and J. Pölkki, ``Analysis, modeling, and real-time sound synthesis of the kantele, a traditional Finnish string instrument,'' in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, (New York), pp. 229-232, IEEE Press, 1993.

31
J. L. Kelly and C. C. Lochbaum, ``Speech synthesis,'' Proceedings of the Fourth International Congress on Acoustics, Copenhagen, pp. 1-4, September 1962,
Paper G42. Reprinted in [, pp. 127-130].

32
A. Krishnaswamy and J. O. Smith, ``Methods for simulating string collisions with rigid spatial objects,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), IEEE Press, Oct. 2003.

33
M. Lang, ``Allpass filter design and applications,'' IEEE Transactions on Signal Processing, vol. 46, no. 9, pp. 2505-2514, 1998.

34
H.-L. Lu, Toward a High-Quality Singing Synthesizer with Vocal Texture Control,
PhD thesis, Elec. Engineering Dept., Stanford University (CCRMA), July 2002,
http://ccrma.stanford.edu/~vickylu/thesis/.

35
J. D. Markel and A. H. Gray, Linear Prediction of Speech,
New York: Springer Verlag, 1976.

36
D. Massie, ``Wavetable sampling synthesis,'' in Applications of DSP to Audio & Acoustics (M. Kahrs and K. Brandenburg, eds.), pp. 311-341, Boston/Dordrecht/London: Kluwer Academic Publishers, 1998.

37
M. E. McIntyre and J. Woodhouse, ``On the fundamentals of bowed string dynamics,'' Acustica, vol. 43, pp. 93-108, Sept. 1979.

38
M. E. McIntyre, R. T. Schumacher, and J. Woodhouse, ``Aperiodicity in bowed-string motion,'' Acustica, vol. 49, pp. 13-32, Sept. 1981.

39
P. M. Morse, Vibration and Sound,
http: //asa.aip.org/publications.html: American Institute of Physics, for the Acoustical Society of America, 1948,
1st edition 1936, last author's edition 1948, ASA edition 1981.

40
P. M. Morse and K. U. Ingard, Theoretical Acoustics,
New York: McGraw-Hill, 1968.

41
A. Ng and A. Horner, ``Iterative combinatorial basis spectra in wavetable matching,'' Journal of the Audio Engineering Society, vol. 50, no. 12, pp. 1054-1063, 2002.

42
A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1999.

43
T. W. Parks and C. S. Burrus, Digital Filter Design,
New York: John Wiley and Sons, Inc., June 1987,
contains FORTRAN software listings.

44
A. D. Pierce, Acoustics,
American Institute of Physics, for the Acoustical Society of America, 1989,
http: //asa.aip.org/publications.html.

45
R. Pitteroff and J. Woodhouse, ``Mechanics of the contact area between a violin bow and a string, part ii: Simulating the bowed string,'' Acta Acustica, vol. 84, pp. 744-757, 1998.

46
R. Pitteroff and J. Woodhouse, ``Mechanics of the contact area between a violin bow and a string, part iii: Parameter dependence,'' Acta Acustica, vol. 84, pp. 929-946, 1998.

47
C. V. Raman, ``On the mechanical theory of vibrations of bowed strings, etc,'' Indian Assoc. Cult. Sci. Bull., vol. 15, pp. 1-158, 1918.

48
C. Roads, ed., The Music Machine,
Cambridge, MA: MIT Press, 1989.

49
C. Roads and J. Strawn, eds., Foundations of Computer Music,
Cambridge, MA: MIT Press, 1985.

50
D. Rocchesso and F. Scalcon, ``Accurate dispersion simulation for piano strings,'' in Proc. Nordic Acoustical Meeting (NAM'96), (Helsinki, Finland), p. 9 pages, June 12-14 1996.

51
T. D. Rossing, F. R. Moore, and P. A. Wheeler, The Science of Sound (3rd Edition),
Reading MA: Addison-Wesley, 2003.

52
P. M. Ruiz, A Technique for Simulating the Vibrations of Strings with a Digital Computer,
PhD thesis, Music Master Diss., Univ. Ill., Urbana, 1969.

53
B. Santo, ``Volume cranked up in amp debate,'' Electronic Engineering Times, pp. 24-35, October 3, 1994,
http: //www.trueaudio.com/at_eetjlm.htm.

54
G. P. Scavone, An Acoustic Analysis of Single-Reed Woodwind Instruments with an Emphasis on Design and Performance Issues and Digital Waveguide Modeling Techniques,
PhD thesis, CCRMA, Music Dept., Stanford University, March 1997,
http://ccrma.stanford.edu/~gary/.

55
J. C. Schelleng, ``The bowed string and the player,'' Journal of the Acoustical Society of America, vol. 53, pp. 26-41, Jan. 1973.

56
S. Serafin and J. O. Smith, ``Impact of string stiffness on digital waveguide models of bowed strings,'' Catgut Acoustical Society Journal, vol. 4, no. 4, pp. 49-52, 2001.

57
S. Serafin, The sound of friction: real-time models, playability and musical applications,
PhD thesis, Music Department, Stanford University, 2004.

58
S. Serafin and D. Young, ``Bowed string physical model validation through use of a bow controller and examination of bow strokes,'' in Proceedings of the Stockholm Musical Acoustics Conference (SMAC-03), http: //www.speech.kth.se/smac03/, 2003.

59
S. Serafin, J. O. Smith, and J. Woodhouse, ``An investigation of the impact of torsion waves and friction characteristics on the playability of virtual bowed strings,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), IEEE Press, Oct. 1999.

60
S. Serafin, P. Huang, S. Ystad, C. Chafe, and J. O. Smith, ``Analysis and synthesis of unusual friction-driven musical instruments,'' in Proceedings of the 2002 International Computer Music Conference, Sweden, 2002.

61
J. H. Smith and J. Woodhouse, ``The tribology of rosin,'' Journal of Mechanics and Physics of Solids, vol. 48, pp. 1633-1681, Aug. 2000.

62
J. O. Smith, Techniques for Digital Filter Design and System Identification with Application to the Violin,
PhD thesis, Elec. Engineering Dept., Stanford University (CCRMA), June 1983,
CCRMA Technical Report STAN-M-14, http: //ccrma.stanford.edu/STANM/stanm14/.

63
J. O. Smith, ``Efficient simulation of the reed-bore and bow-string mechanisms,'' in Proceedings of the 1986 International Computer Music Conference, The Hague, pp. 275-280, Computer Music Association, 1986,
also available in [64].

64
J. O. Smith, ``Music applications of digital waveguides,'' Tech. Rep. STAN-M-39, CCRMA, Music Department, Stanford University, 1987,
CCRMA Technical Report STAN-M-39, http: //ccrma.stanford.edu/STANM/stanm39/.

65
J. O. Smith, ``Physical modeling using digital waveguides,'' Computer Music Journal, vol. 16, pp. 74-91, Winter 1992,
special issue: Physical Modeling of Musical Instruments, Part I. http: //ccrma.stanford.edu/~jos/pmudw/.

66
J. O. Smith, ``Efficient synthesis of stringed musical instruments,'' in Proceedings of the 1993 International Computer Music Conference, Tokyo, pp. 64-71, Computer Music Association, 1993,
incorporated into [71].

67
J. O. Smith, ``Principles of digital waveguide models of musical instruments,'' in Applications of Digital Signal Processing to Audio and Acoustics (M. Kahrs and K. Brandenburg, eds.), pp. 417-466, Boston/Dordrecht/London: Kluwer Academic Publishers, 1998.

68
J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT),
http: //w3k.org/books/: W3K Publishing, 2003,
http: //ccrma.stanford.edu/~jos/mdft/.

69
J. O. Smith, Introduction to Digital Filters,
http: //ccrma.stanford.edu/~jos/filters/, May 2004.

70
J. O. Smith, ``On the equivalence of digital waveguide and finite difference time domain schemes,'' July 21, 2004,
http: //arxiv.org/abs/physics/0407032/.

71
J. O. Smith, Physical Audio Signal Processing: Digital Waveguide Modeling of Musical Instruments and Audio Effects,
http: //ccrma.stanford.edu/~jos/pasp/, August 2004.

72
J. O. Smith, ``Virtual acoustic musical instruments: Review and update,'' Journal of New Music Research, vol. 33, no. 3, pp. 283-304, 2004.

73
J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations,
Pacific Grove, CA: Wadsworth and Brooks, 1989.

74
C. R. Sullivan, ``Extending the Karplus-Strong algorithm to synthesize electric guitar timbres with distortion and feedback,'' Computer Music Journal, vol. 14, pp. 26-37, Fall 1990.

75
T. Tolonen, V. Välimäki, and M. Karjalainen, ``Modeling of tension modulation nonlinearity in plucked strings,'' IEEE Transactions on Speech and Audio Processing, vol. SAP-8, pp. 300-310, May 2000.

76
C. Traube and J. Smith, ``Estimating the fingering and the plucking points on a guitar string from a recording,'' in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, (New York), IEEE Press, Oct. 2001.

77
V. Välimäki, M. Laurson, and C. Erkut, ``Commuted waveguide synthesis of the clavichord,'' Computer Music Journal, vol. 27, pp. 71-82, Spring 2003.

78
V. Välimäki, J. Huopaniemi, M. Karjalainen, and Z. Jánosy, ``Physical modeling of plucked string instruments with application to real-time sound synthesis,'' Journal of the Audio Engineering Society, vol. 44, pp. 331-353, May 1996.

79
V. Välimäki, H. Penttinen, J. Knif, M. Laurson, and C. Erkut, ``Sound synthesis of the harpsichord using a computationally efficient physical model,'' EURASIP Journal on Applied Signal Processing, vol. 7, pp. 934-948, 2004,
special issue on Model-Based Sound Synthesis.

80
C. Vallette, ``The mechanics of vibrating strings,'' in Mechanics of Musical Instruments (A. Hirschberg, J. Kergomard, and G. Weinreich, eds.), pp. 115-183, Berlin: Springer-Verlag, 1995.

81
G. Weinreich, ``Coupled piano strings,'' Journal of the Acoustical Society of America, vol. 62, pp. 1474-1484, Dec 1977,
see also [] and Scientific American, vol. 240, p. 94, 1979.

82
J. Woodhouse, ``Bowed string simulation using a thermal friction model,'' Acustica - Acta Acustica, vol. 89, pp. 355-368, 2003.

next Index
previous Conclusion
Contents Doc Top  |  Global Contents  |  Global Index |  JOS Home  | Search
Global_index Index

Download asahb04.pdf

``Digital Waveguide Architectures for Virtual Musical Instruments'', by Julius O. Smith III, DRAFT.
Copyright © 2005-11-29 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]