Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Kaiser (Kaiser-Bessel)

Kaiser discovered a very good approximation to prolate spheroidal wave functions using Bessel functions:

$\displaystyle w_K(n) \mathrel{\stackrel{\Delta}{=}}\left\{ \begin{array}{ll}
\frac{ I_0 \left( \beta \sqrt{ 1 - \left( \frac{n}{M/2}\right)^2} \right)}{ I_0(\beta) }, & -\frac{M-1}{2} \leq n \leq \frac{M-1}{2} \\
0, & \mbox{elsewhere} \\
\end{array} \right.
$

$\displaystyle w_K(n) \;\mathrel{\stackrel{\mathrm{\Delta}}{=}}\;w_R(n) \frac{ I_0 \left( \beta \sqrt{ 1 - \left( \frac{n}{M/2}\right)^2} \right)}{ I_0(\beta) }
$

This is called the Kaiser (or Kaiser-Bessel) window.

The Fourier transform of the Kaiser window $ w_K(t)$ (where $ t$ is treated as continuous) is given by

\begin{eqnarray*}
W(\omega) &=&
\frac{M}{I_0(\beta)}
\frac{\sinh\left(\sqrt{\beta^2 - \left(\frac{M \omega}{2}\right)^2}\right)}
{\sqrt{ \beta^2 - \left(\frac{M\omega}{2}\right)^2}}\\ [10pt]
&=& \frac{M}{I_0(\beta)}
\frac{\sin\left(\sqrt{\left(\frac{M \omega}{2}\right)^2-\beta^2}\right)}
{\sqrt{\left(\frac{M\omega}{2}\right)^2 - \beta^2}}
\end{eqnarray*}

where $ I_0$ is the zero-order modified Bessel function of the first kind.


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``FFT Windows'', by Julius O. Smith III and Bill Putnam, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III and Bill Putnam
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]