Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Overlap-Add Signal Decomposition

Consider breaking the input signal $ x$ , into frames using a finite, zero-centered, length $ M$ (odd) window. Let $ x_m$ denote the $ m^{th}$ frame.

$\displaystyle x_m(n) \mathrel{\stackrel{\Delta}{=}}x(n)w(n-mR) \hspace{1cm} n \in (-\infty, +\infty)
$

or

$\displaystyle x_m \mathrel{\stackrel{\Delta}{=}}x \cdot \hbox{\sc Shift}_{mR}(w)
$

where

$\displaystyle R \mathrel{\stackrel{\Delta}{=}}\hbox{frame step (hop size)} \hspace{2cm}
m \mathrel{\stackrel{\Delta}{=}}\hbox{frame index}
$

The hop size is the number of samples between adjacent frames. Specifically, it is the number of samples by which we advance each succesive window.

For fast convolution only, choose


Next  |  Prev  |  Up  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``FFT Signal Processing: The Overlap-Add (OLA) Method for Fourier Analysis, Modification, and Resynthesis'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]