Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Periodogram Normalization

Periodogram Definition:

$\displaystyle P_{x,M}(\omega) \;\mathrel{\stackrel{\mathrm{\Delta}}{=}}\;
\frac{1}{M} \left\vert\hbox{\sc DTFT}(x_w)\right\vert^2
$

To relate to power spectral density (PSD), check the dc sample:

\begin{eqnarray*}
{\cal E}\{P_{x,M}(0)\}
&=& \frac{1}{M} {\cal E}\left\{\left(\sum_{n=-\infty}^{\infty}w_R(n)x(n)\right)^2\right\}\\ [5pt]
&=& \frac{1}{M} \sum_{n=0}^{M-1}{\cal E}\{x^2(n)\}\\ [5pt]
&=& \sigma_x^2
\end{eqnarray*}



Subsections
Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Lecture 5: Spectrum Analysis of Noise'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-27 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]