next up previous contents index
Next: Index Up: Numerical Sound Synthesis Previous: Gong   Contents   Index

Bibliography

1
J.-M. Adrien.
The missing link: Modal synthesis.
In G. DePoli, A. Picialli, and C. Roads, editors, Representations of Musical Signals, pages 269-297. MIT Press, Cambridge, MA, 1991.

2
W. Ames.
Numerical Methods for Partial Differential Equations.
Thomas Nelson and Sons, London, 1969.

3
G. Anand.
Large-amplitude damped free vibration of a stretched string.
Journal of the Acoustical Society of America, 45(5):1089-1096, 1969.

4
S. Antman.
Nonlinear Problems of Elasticity.
Springer-Verlag, New York, 1995.

5
M. Aramaki.
Analyse-synthese de sons impulsifs: approches physiques et perceptives.
PhD thesis, Universite de la Mediterrannée-Aix Marseille II, 2002.

6
M. Aramaki and R. Kronland-Martinet.
Analysis-synthesis of impact sounds by real-time dynamic filtering.
IEEE Transactions on Audio Speech and Language Processing, 14(2):695-705, 2006.

7
D. Arfib.
Digital synthesis of complex spectra by beans of multiplication of nonlinear distorted sine waves.
Journal of the Audio Engineering Society, 27(10):757-768, 1979.

8
F. Avanzini and D. Rocchesso.
Efficiency, accuracy, and stability issues in discrete time simulations of single reed instruments.
Journal of the Acoustical Society of America, 111(5):2293-2301, 2002.

9
R. Bacon and J. Bowsher.
A discrete model of a struck string.
Acustica, 41:21-7, 1978.

10
R. Bader.
Computational Mechanics of the Classical Guitar.
Springer, 2005.

11
B. Bank and L. Sujbert.
Modeling the longitudinal vibration of piano strings.
In Proceedings of the Stockholm Musical Acoustics Conference, pages 143-146, Stockholm, Sweden, August 2003.

12
B. Bank and L. Sujbert.
A piano model including longitudinal string vibration.
In Proceedings of the International Digital Audio Effects Conference, pages 89-94, Naples, Italy, October 2004.

13
B. Bank and L. Sujbert.
Generation of longitudinal vibrations in piano strings: From physics to sound synthesis.
Journal of the Acoustical Society of America, 117(4):539-557, 2005.

14
M. Beeson and D. Murphy.
Roomweaver: A digital waveguide mesh based room acoustics research tool.
In Proceedings of the Digital Audio Effects Conference, ADDRESS =.

15
V. Belevitch.
Summary of the history of circuit theory.
Proceedings of the IRE, 50:848-855, May 1962.

16
R. Benamar and M. Bennouna.
The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, part II: Fully clamped rectangular isotropic plates.
Journal of Sound and Vibration, 164(2):295-316, 1993.

17
J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O. Smith III.
The simulation of piano string vibration: From physical models to finite difference schemes and digital waveguides.
Journal of the Acoustical Society of America, 114(2):1095-1107, 2003.

18
J. Bensa, S. Bilbao, R. Kronland-Martinet, J.O. Smith III, and T. Voinier.
Computational modeling of stiff piano strings using digital waveguides and finite differences.
Acustica, 91:289-298, 2005.

19
H. Berger.
A new approach to the analysis of large deflections of plates.
Journal of Applied Mathematics, 22:465-472, 1955.

20
D. Berners.
Acoustics and Signal Processing Techniques for Physical Modelling of Brass Instruments.
PhD thesis, Department of Electrical Engineering, Stanford University, 1999.

21
S. Bilbao.
Parameterized families of finite difference schemes for the wave equation.
Numerical Methods for Partial Differential Equations, 20(3):463-480, 2004.

22
S. Bilbao.
Wave and Scattering Methods for Numerical Simulation.
John Wiley and Sons, Chichester, UK, 2004.

23
S. Bilbao.
Conservative numerical methods for nonlinear strings.
Journal of the Acoustical Society of America, 118(5):3316-3327, 2005.

24
S. Bilbao.
Energy-conserving numerical methods for nonlinear plates of Berger type, 2006.
Under review, Acustica united with Acta Acustica.

25
S. Bilbao.
A family of conservative finite difference schemes for the dynamical von Karman plate equations, 2006.
Under review, Computer Methods in Applied Mechanics and Engineering.

26
S. Bilbao.
Fast modal synthesis by digital waveguide extraction.
IEEE Signal Processing Letters, Jan 2006.

27
S. Bilbao, K. Arcas, and A. Chaigne.
A physical model of plate reverberation.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, 2006.

28
S. Bilbao, L. Savioja, and J. O. Smith III.
Parameterized finite difference schemes for plates: Stability, the reduction of directional dispersion and frequency warping.
IEEE Transactions on Speech and Audio Processing, 2006.
In press.

29
S. Bilbao and J. O. Smith III.
Finite difference schemes for the wave equation: Stability, passivity and numerical dispersion.
IEEE Transactions on Acoustics, Speech, and Signal Processing, pages 255-266, May 2003.

30
S. Bilbao and J. O. Smith III.
Energy-conserving finite difference schemes for nonlinear strings.
Acustica, 91:299-311, 2005.

31
S. Bilbao and J. O. Smith III.
Energy conserving finite difference schemes for nonlinear strings.
Acustica, 91:299-311, 2005.

32
I. Bisnovatyi.
Flexible software framework for modal synthesis.
In Proceedings of the Digital Audio Effects Conference, Verona, Italy, December 2000.

33
G. Borin, G. DePoli, and A. Sarti.
Algorithms and structures for synthesis using physical models.
Computer Music Journal, 16(4):30-42, 1992.

34
G. Borin, G. DePoli, and A. Sarti.
Musical signal synthesis.
In C. Roads, S. Pope, A. Piccialli, and G. DePoli, editors, Musical Signal Processing, pages 5-30. Swets and Zeitlinger, Lisse, The Netherlands, 1997.

35
G. Borin, G. De Poli, and D. Rochesso.
Elimination of delay-free loops in discrete-time models of nonlinear acoustic systems.
IEEE Transactions on Speech and Audio Processing, 8:597-606, 2000.

36
R. Boulanger, editor.
The csound Book: Perspectives in Software Synthesis, Sound Design, Signal Processing,and Programming.
MIT Press, Cambridge, Massachusetts, 2001.

37
A. Bruckstein and T. Kailath.
An inverse scattering framework for several problems in signal processing.
IEEE ASSP Magazine, 4(1):6-20, January 1987.

38
C. Cadoz, A. Luciani, and J.-L. Florens.
Responsive input devices and sound synthesis by simulation of instrumental mechanisms.
Computer Music Journal, 8(3):60-73, 1983.

39
C. Cadoz, A. Luciani, and J.-L. Florens.
Cordis-anima: A modeling and simulation system for sound and image synthesis.
Computer Music Journal, 17(1):19-29, 1993.

40
M. Campbell and C. Greated.
The Musician's Guide to Acoustics.
Oxford University Press, 1994.

41
C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang.
Spectral Methods in Fluid Dynamics.
Springer, 1988.

42
G. F. Carrier.
On the nonlinear vibration problem of the elastic string.
Quarterly of Applied Mathematics, 3:157-165, 1945.

43
S. Cavaliere and A. Piccialli.
Granular synthesis of musical signals.
In C. Roads, S. Pope, A. Piccialli, and G. DePoli, editors, Musical Signal Processing, pages 155-186. Swets and Zeitlinger, Lisse, The Netherlands, 1997.

44
A. Chaigne.
On the use of finite differences for musical synthesis. Application to plucked stringed instruments.
Journal d'Acoustique, 5(2):181-211, 1992.

45
A. Chaigne and A. Askenfelt.
Numerical simulations of struck strings. I. A physical model for a struck string using finite difference methods.
Journal of the Acoustical Society of America, 95(2):1112-1118, February 1994.

46
A. Chaigne and A. Askenfelt.
Numerical simulations of struck strings. II. Comparisons with measurements and systematic exploration of some hammer-string parameters.
Journal of the Acoustical Society of America, 95(3):1631-40, Mar. 1994.

47
A. Chaigne and V. Doutaut.
Numerical simulations of xylophones. I. Time domain modeling of vibrating bars.
Journal of the Acoustical Society of America, 101(1):539-557, 1997.

48
A. Chaigne and C. Lambourg.
Time-domain simulation of damped impacted plates. I Theory and experiments.
Journal of the Acoustical Society of America, 109(4):1422-1432, 2001.

49
J. Chowning.
The synthesis of complex audio spectra by means of frequency modulation.
Journal of the Audio Engineering Society, 21(7), 1973.

50
C. Christopoulos.
The Transmission-Line Modelling Method.
IEEE Press, New York, New York, USA, 1995.

51
G. Cohen and P. Joly.
Construction and analysis of fourth-order finite difference schemes for the acoustic wave equation in non-homogeneous media.
SIAM Journal of Numerical Analysis, 33(4):1266-1302, 1996.

52
H. Conklin.
Design and tone in the mechanoacoustic piano. part III. piano strings and scale design.
Journal of the Acoustical Society of America, 100(3):1286-1298, 1996.

53
P. Cook.
Identification of Control Parameters in an Articulatory Vocal Tract Model with Applications to the Synthesis of Singing.
PhD thesis, Department of Electrical Engineering, Stanford University, 1990.

54
P. Cook.
Tbone: An interactive waveguide brass instrument synthesis workbench for the next machine.
In Proceedings of the International Computer Music Conference, pages 297-299, Montreal, Canada, 1991.

55
P. Cook.
Spasm: A real-time vocal tract physical model editor/controller and singer: the companion software synthesis system.
Computer Music Journal, 17(1):30-44, 1992.

56
P. Cook.
Physically informed sonic modelling (PhISM): Synthesis of percussive sounds.
Computer Music Journal, 21(3):38-49, 1997.

57
P. Cook.
Real Sound Synthesis for Interactive Applications.
A. K. Peters, 2002.

58
P. Cook and G. Scavone.
The synthesis tool kit.
In Proceedings of the International Computer Music Conference, Beijing, China, 1999.

59
R. Cook, editor.
Concepts and applications of finite element analysis.
Wiley, New York, fourth edition, 2002.

60
J. Cooley and J. Tukey.
An algorithm for the machine computation of complex Fourier series.
Mathematical Computation, 19:297-301, 1965.

61
R. Courant, K. Friedrichs, and H. Lewy.
Über die partiellen differenzengleichungen de mathematischen Physik.
Mathematische Annalen, 100:32-74, 1928.

62
M. Dablain.
The application of high-order differencing to the scalar wave equation.
Geophysics, 51(1):54-66, 1986.

63
G. Dahlquist.
A special stability problem for linear multistep methods.
BIT, 3:27-43, 1963.

64
P. Depalle and S. Tassart.
State space sound synthesis and a state space synthesiser builder.
In Proceedings of the International Computer Music Conference, pages 88-95, Banff, 1995.

65
G. DePoli, A. Picialli, and C. Roads, editors.
Representations of Musical Signals.
MIT Press, Cambridge, MA, 1991.

66
R. Dickey.
Infinite systems of nonlinear oscillation equations related to the string.
Proceedings of the American Mathematics Society, 23(3):459-468, 1969.

67
R. Dickey.
Stability of periodic solutions of the nonlinear string.
Quarterly of Applied Mathematics, 38:253-259, 1980.

68
C. Dodge and T. Jerse.
Computer Music: Synthesis, Composition and Performance.
Schirmer Books, New York, 1985.

69
M. Dolson.
The phase vocoder: A tutorial.
Computer Music Journal, 10(4):14-27, 1986.

70
V. Doutaut, D. Matignon, and A. Chaigne.
Numerical simulations of xylophones. II. Time domain modeling of the resonator and of the radiated sound pressure.
Journal of the Acoustical Society of America, 104(3):1633-1647, 1998.

71
E. Ducasse.
A physical model of a single reed wind instrument, including actions of the player.
Computer Music Journal, 27(1):59-70, 2003.

72
G. Eckel, F. Iovino, and R. Caussé.
Sound synthesis by physical modelling with modalys.
In Proceedings of the International Symposium on Musical Acoustics, pages 479-482, Dourdan, France, 1995.

73
G. Efstathiades.
A new appoach to the large-deflection vibrations of imperfect circular disks using Galerkin's procedure.
Journal of Sound and Vibration, 16(2):231-253, 1971.

74
C. Erkut.
Aspects in Analysis and Model-Based Sound Synthesis of Plucked String Instruments.
PhD thesis, Laboratory of Acoustics and Audio Signal Processing, Helsinki University of Technology, 2002.

75
C. Erkut, M. Karjalainen, P. Huang, and V. Välimäki.
Acoustical analysis and model-based sound synthesis of the kantele.
Journal of the Acoustical Society of America, 112(4):1681-1691, 2002.

76
G. Essl, S. Serafin, P. Cook, and J. O. Smith III.
Musical applications of banded waveguides.
Computer Music Journal, 28(1):51-63, 2004.

77
G. Essl, S. Serafin, P. Cook, and J. O. Smith III.
Theory of banded waveguides.
Computer Music Journal, 28(1):37-50, 2004.

78
G. Evangelista.
Wavelet representations of musical signals.
In C. Roads, S. Pope, A. Piccialli, and G. DePoli, editors, Musical Signal Processing, pages 127-153. Swets and Zeitlinger, Lisse, The Netherlands, 1997.

79
G. Evans, J. Blackledge, and P. Yardley.
Numerical Methods for Partial Differential Equations.
Springer, London, 1999.

80
A. Fettweis.
Digital filters related to classical structures.
AEU: Archive für Elektronik und Übertragungstechnik, 25:79-89, February 1971.
(See also U.S. Patent 3,967,099, 1976, now expired.).

81
A. Fettweis.
Wave digital filters: Theory and practice.
Proceedings of the IEEE, 74(2):270-327, February 1986.

82
A. Fettweis and K. Meerkötter.
On adaptors for wave digital filters.
IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-23(6):516-525, December 1975.

83
A. Fettweis and G. Nitsche.
Transformation approach to numerically integrating PDEs by means of WDF principles.
Multidimensional Systems and Signal Processing, 2(2):127-159, May 1991.

84
H. D. Fischer.
Wave digital filters for numerical integration.
ntz-Archiv, 6:37-40, February 1984.

85
J. Flanagan and R. Golden.
The phase vocoder.
Bell System Technical Journal, 45:1493-1509, 1966.

86
N. Fletcher and T. Rossing.
The Physics of Musical Instruments.
Springer-Verlag, New York, New York, USA, 1991.

87
J.-L. Florens and C. Cadoz.
The physical model: Modeling and simulating the instrument universe.
In G. DePoli, A. Picialli, and C. Roads, editors, Representations of Musical Signals, pages 227-268. MIT Press, Cambridge, MA, 1991.

88
F. Fontana and D. Rocchesso.
Physical modelling of membranes for percussive instruments.
Acustica United with Acta Acustica, 84:529-542, May/June 1998.

89
F. Fontana and D. Rocchesso.
Signal-theoretic characterization of waveguide mesh geometries for models of two-dimensional wave propagation in elastic media.
IEEE Transactions on Speech and Audio Processing, 9(2):152-61, Feb. 2001.

90
B. Fornberg.
A Practical Guide to Pseudospectral Methods.
Cambridge Monographs on Applied and Computational Mathematics, Cambridge, England, 1995.

91
D. Furihata.
Finite difference schemes for nonlinear wave equation that inherit energy-conservation property.
Journal of Computational and Applied Mathematics, 134(1-2):37-57, 2001.

92
P. Garabedian.
Partial Differential Equations.
Chelsea Publishing Company, New York, New York, USA, second edition, 1986.

93
M. Garber.
Master's thesis, Massachusetts Institute of Technology, 1982.

94
Y. Genin.
An algebraic approach to A-stable linear multistep-multiderivative integration formulas.
BIT, 14(4):382-406, 1974.

95
N. Giordano.
Simple model of a piano soundboard.
Journal of the Acoustical Society of America, 102(2):1159-1168, 1997.

96
N. Giordano.
Sound production by a vibrating piano soundboard: Experiment.
Journal of the Acoustical Society of America, 104(3):1648-1653, 1998.

97
N. Giordano and M. Jiang.
Physical modeling of the piano.
Eurasip Journal of Applied Signal Processing, pages 926-33, 2004.

98
D. Gottlieb and S. Orszag.
Numerical Analysis of Spectral Methods.
SIAM-CBMS, Philadelphia, 1977.

99
C. Gough.
The nonlinear free vibration of a damped elastic string.
Journal of the Acoustical Society of America, 75(6):1770-1776, 1984.

100
K. Graff.
Wave Motion in Elastic Solids.
Dover, New York, New York, USA, 1975.

101
D. Greenspan.
Conservative numerical methods for $ \ddot{x} = f(x)$.
J. Comp. Phys., 56:28-41, 1984.

102
B. Gustaffson, H.-O. Kreiss, and J. Oliger.
Time Dependent Problems and Difference Methods.
John Wiley and Sons, New York, New York, USA, 1995.

103
B. Gustaffson, H.-O. Kreiss, and A. Sundstrom.
Stability theory of difference approximations for mixed initial boundary value problems. II.
Mathematics of Computation, 26(119):649-686, 1972.

104
L. Hiller and P. Ruiz.
Synthesizing musical sounds by solving the wave equation for vibrating objects: Part I.
Journal of the Audio Engineering Society, 19(6):462-470, 1971.

105
L. Hiller and P. Ruiz.
Synthesizing musical sounds by solving the wave equation for vibrating objects: Part II.
Journal of the Audio Engineering Society, 19(7):542-550, 1971.

106
M. Hirsch and S. Smale.
Differential Equations, Dynamical Systems and Linear Algebra.
Academic Press, New York, 1974.

107
A. Hirschberg, J. Kergomard, and G. Weinreich, editors.
Mechanics of Musical Instruments.
Springer, New York, 1995.

108
W. J. R. Hoefer.
The Electromagnetic Wave Simulator.
John Wiley and Sons, Chichester, England, 1991.

109
D. Jaffe and J. O. Smith III.
Extensions of the Karplus-Strong plucked string algorithm.
Computer Music Journal, 7(2):56-68, Summer 1983.

110
H. Järveläinen, T. Verma, and V. Välimäki.
Perception and adjustment of pitch in inharmonic string instrument tones.
31(4):311-319, 2002.

111
W. Jin and L. Ruxun.
A new approach to design high-order schemes.
Journal of Computational and Applied Mathematics, 134:59-67, 2001.

112
P. Johns and R. Beurle.
Numerical solution of 2-dimensional scattering problems using a transmission-line matrix.
Proceedings of the IEE, 118:1203-1208, September 1971.

113
J. Johnson and A. Bajaj.
Amplitude modulated and chaotic dynamics in resonant motion of strings.
Journal of Sound and Vibration, 128(1):87-107, 1989.

114
W. Kaegi and S. Tempelaars.
VOSIM-a new sound synthesis system.
Journal of the Audio Engineering Society, 26(6):418-426, 1978.

115
T. Kailath.
Linear Systems.
Prentice Hall, 1980.

116
T. Kailath and A. Sayed.
Displacement structure: Theory and applications.
SIAM Review, 37(3):297-386, 1995.

117
M. Karjalainen.
Block-compiler: Efficient simulation of acoustic and audio systems.
In Preprints of AES 114th Convention, Amsterdam, the Netherlands, May 2003.

118
M. Karjalainen.
Time-domain physical modelling and real-time synthesis using mixed modelling paradigms.
In Proceedings of the Stockholm Musical Acoustics Conference, volume 1, pages 393-396, Stockholm, Sweden, August 2003.

119
M. Karjalainen and C. Erkut.
Digital waveguides vs. finite difference schemes: Equivalence and mixed modeling.
EURASIP Journal on Applied Signal Processing, pages 978-989, june 2004.

120
M. Karjalainen, V. Välimäki, and Z. Janosy.
Towards high-quality sound synthesis of the guitar and string instruments.
In Proceedings of the International Computer Music Conference, pages 56-63, Tokyo, Japan, 1993.

121
M. Karjalainen, V. Välimäki, and T. Tolonen.
Plucked-string synthesis: From the karplus-strong algorithm to digital waveguides and beyond.
Computer Music Journal, 22(3):17-32, 1998.

122
K. Karplus and A. Strong.
Digital synthesis of plucked-string and drum timbres.
Computer Music Journal, 7(2):43-55, Summer 1983.

123
D. Keefe.
Physicl modeling of wind instruments.
Computer Music Journal, 16(4):57-73, 1992.

124
J. L. Kelly and C. C. Lochbaum.
Speech synthesis.
In Proceedings of the Fourth International Congress on Acoustics, pages 1-4, Copenhagen, Denmark, 1962.
Paper G42.

125
J. Kergomard.
Elementary Considerations on Reed-instrument Oscillations.
Springer, New York, New York, USA, 1995.

126
J.W. Kim and D. J. Lee.
Optimized compact finite difference schemes with maximum resolution.
AIAA Journal, 34(5):887-92, 1996.

127
R. Kirby and Z. Yosibash.
Dynamic response of various von Karman non-linear plate models and their 3-D counterparts.
International Journal of Solids and Structures, 193(6-8):575-599, 2004.

128
R. Kirby and Z. Yosibash.
Solution of von Karman dynamic non-linear plate equations using a pseudo-spectral method.
Computer Methods in Applied Mechanics and Engineering, 193(6-8):575-599, 2004.

129
G. Kirchhoff.
Vorlesungen über Mechanik.
Tauber, Leipzig, 1883.

130
H.-O. Kreiss.
Initial boundary value problems for hyperbolic systems.
Communications on Pure and Applied Mathematics, 23:277-298, 1970.

131
G. Kron.
Equivalent circuit of the field equations of Maxwell.
Proceedings of the IRE, 32(5):284-299, May 1944.

132
E. Kurmyshev.
Transverse and longitudinal mode coupling in a free vibrating soft string.
Physics Letters A, 310(2-3):148-160, 2003.

133
M. Kurz and B. Feiten.
Physical modeling of a stiff string by numerical integration.
In Proceedings of the International Computer Music Conference, pages 361-364, Hong Kong, 1996.

134
T. Laakso, V. Välimäki, M. Karjalainen, and U. Laine.
Splitting the unit delay--tools for fractional delay filter design.
IEEE Signal Processing Magazine, 13(1):30-60, January 1996.

135
M. Laurson, C. Erkut, V. Välimäki, and M. Kuuskankare.
Methods for modeling realistic playing in acoustic guitar synthesis.
Computer Music Journal, 25(3):38-49, 2001.

136
M. LeBrun.
Digital waveshaping synthesis.
Journal of the Audio Engineering Society, 27(4):250-266, 1979.

137
S. K. Lele.
Compact finite difference schemes with spectral-like resolution.
Journal of Computational Physics, 103:16-42, 1992.

138
A. Leung and S. Mao.
A symplectic Galerkin method for nonlinear vibration of beams and plates.
Journal of Sound and Vibration, 183(3):475-491, 1995.

139
S. Li and L. Vu-Quoc.
Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein Gordon equation.
SIAM Journal of Numerical Analysis, 32:1839-1875, 1995.

140
I. Liu and M. Rincon.
Effect of moving boundaries on the vibrating elastic string.
Applied Numerical Mathematics, 47:159-172, 2003.

141
D. P. Lockard, K. S. Brentner, and H. L. Atkins.
High-accuracy algorithms for computational aeroacoustics.
AIAA Journal, 33(2):247-51, 1995.

142
P. Manning.
Electronic and Computer Music.
Clarendon Press, Oxford, 1985.

143
J. D. Markel and A. H. Gray, Jr.
Linear Prediction of Speech Signals.
Springer-Verlag, New York, New York, USA, 1976.

144
J. McCartney.
Supercollider: A new real-time sound synthesis language.
In Proceedings of the International Computer Music Conference, pages 257-258, Hong Kong, 1996.

145
E. Miranda.
Computer Sound Synthesis for the Electronic Musician.
Focal Press, Oxford, 1998.

146
R. Moore.
Elements of Computer Music.
Prentice Hall, 1990.

147
D. Morrill.
Trumpet algorithms for computer composition.
Computer Music Journal, 1(1):46-52, 1977.

148
D. Morrison and J.-M. Adrien.
Mosaic: A framework for modal synthesis.
Computer Music Journal, 17(1):45-56, 1993.

149
P. Morse and U. Ingard.
Theoretical Acoustics.
Princeton University Press, Princeton, New Jersey, 1968.

150
R. Msallam, S. Dequidt, S. Tassart, and R Caussé.
Physical model of the trombone including nonlinear propagation effects. application to the sound synthesis of loud tones.
Acta Acutsica United with Acustica, 86:725-736, 2000.

151
A. Nayfeh and D. Mook.
Nonlinear Oscillations.
John Wiley and Sons, New York, 1979.

152
A. Noor and W. Pilkey.
State-of-the-Art Surveys on Finite Element Technology.
ASME, New York, 1983.

153
B. J. Noye and J. Rankovic.
An accurate explicit finite difference technique for solving the one-dimensional wave equation.
Communications in Applied Numerical Methods, 2:557-61, 1986.

154
B. J. Noye and J. Rankovic.
An accurate five-point implicit finite difference method for solving the one-dimensional wave equation.
Communications in Applied Numerical Methods, 5:247-52, 1989.

155
A. V. Oppenheim and R. Schafer.
Digital Signal Processing.
Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1975.

156
O. O'Reilly and P. Holmes.
Non-linear, non-planar and non-periodic vibrations of a string.
Journal of Sound and Vibration, 153(3):413-435, 1992.

157
S. Osher.
Stability of difference approximations of dissipative type for mixed initial boundary value problems. I.
Mathematics of Computation, 23:335-340, 1969.

158
J. Pakarinen, V. Välimäki, and M. Karjalainen.
Physics-based methods for modeling nonlinear vibrating strings.
Acustica United with Acta Acustica, 91(2):312-325, 2005.

159
F. Pedersini, A. Sarti, S. Tubaro, and R. Zattoni.
Towards the automatic synthesis of nonlinear wave digital models for musical acoustics.
In Proceedings of EUSIPCO-98, Ninth European Signal Processing Conference, volume 4, pages 2361-2364, Rhodes, Greece, 1998.

160
H. Penttinen, C. Erkut, J. Pölkki, V. Välimäki, and M. Karjalainen.
Design and analysis of a modified kantele with increased loudness.
Acustica United with Acta Acustica, 91(2):261-268, 2005.

161
S. Petrausch, J. Escolano, and R. Rabenstein.
A general approach to block-based physical modeling. with mixed modeling strategies for digital sound synthesis.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.

162
M. Portnoff.
Implementation of the digital phase vocoder using the fast Fourier transform.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(3):243-248, 1976.

163
J. Proakis.
Digital Signal Processing.
Prentice-Hall, Englewood Cliffs, New Jersey, USA, third edition, 1996.

164
M. Puckette.
Pure data.
In Proceedings of the International Computer Music Conference, pages 269-272, 1996.

165
M. Puckette.
Theory and techniques of electronic music, 2006.
Available online at http://www-crca.ucsd.edu/ msp/techniques.htm.

166
A. Quarteroni and A. Valli.
Numerical Approximation of Partial Differential Equations.
Springer, Berlin, 1997.

167
L. Rabiner and R. Schafer.
Digital Processing of Speech Signals.
Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1978.

168
M. Rath, F. Avanzini, and D. Rocchesso.
Physically based real-time modeling of contact sounds.
In Proceedings of the International Computer Music Conference, Goteborg, Sweden, 2002.

169
L. Rhaouti, A. Chaigne, and P. Joly.
Time-domain modeling and numerical simulation of a kettledrum.
Journal of the Acoustical Society of America, 105(6):3545-3562, 1999.

170
P. Ribeiro and M. Petyt.
Geometrical non-linear, steady state forced periodic vibration of plates, part I: Model and convergence studies.
Journal of Sound and Vibration, 226(5):955-983, 1999.

171
R. Richtmyer and K. Morton.
Difference Methods for Initial-Value Problems.
Krieger Publishing Company, Malabar, Florida, USA, second edition, 1994.

172
C. Roads.
Granular synthesis of sound.
In C. Roads and J. Strawn, editors, Foundations of Computer Music, pages 145-159. 1985.

173
C. Roads.
A tutorial on nonlinear distortion or waveshaping synthesis.
In C. Roads and J. Strawn, editors, Foundations of Computer Music, pages 83-94. 1985.

174
C. Roads.
The Computer Music Turorial.
MIT Press, Cambridge, Massachusetts, 1996.

175
C. Roads, S. Pope, A. Piccialli, and G. DePoli, editors.
Musical Signal Processing.
Swets and Zeitlinger, Lisse, The Netherlands, 1997.

176
C. Roads and J. Strawn, editors.
Foundations of Computer Music.
MIT Press, 1985.

177
D. Rocchesso.
The ball within the box: A sound processing metaphor.
Computer Music Journal, 19(4):47-57, 1995.

178
D. Rocchesso.
Maximally diffusive yet efficient feedback delay networks for artificial reverberation.
IEEE Signal Processing Letters, 4(9):252-255, September 1997.

179
D. Rocchesso and F. Fontana, editors.
The Sounding Object.
Mondo Estremo, 2003.
Available Online at http://www.mondo-estremo.com/info/publications/public.html.

180
D. Rocchesso and J. O. Smith III.
Circulant and elliptic feedback delay networks for artificial reverberation.
IEEE Transactions on Speech and Audio Processing, 5(1):51-63, January 1997.

181
X. Rodet.
Time-domain formant-wave-function synthesis.
Computer Music Journal, 8(3):9-14, 1980.

182
X. Rodet and C. Vergez.
Nonlinear dynamics in physical models: From basic models to true musical-instrument models.
Computer Music Journal, 23(3):35-49, 1999.

183
X. Rodet and C. Vergez.
Nonlinear dynamics in physical models: Simple feedback loop systems and properties.
Computer Music Journal, 23(3):18-34, 1999.

184
T. Rossing, F. Moore, and P. Wheeler.
The Science of Sound.
Addison Wesley, third edition, 2002.

185
D. Rowland.
Parametric resonance and nonlinear string vibrations.
American Journal of Physics, 72(6):758-765, 2004.

186
M. Rubin and O. Gottlieb.
Numerical solutions of forced vibration and whirling of a nonlinear string using the theory of a Cosserat point.
Journal of Sound and Vibration, 197(1):85-101, 1996.

187
P. Ruiz.
A technique for simulating the vibrations of strings with a digital computer.
Master's thesis, University of Illinois, 1969.

188
J. Sanz-Serna.
An explicit finite-difference scheme with exact conservation properties.
Journal of Computational Physics, 47:199-210, 1982.

189
J. Sanz-Serna.
Symplectic integrators for hamiltonian problems: An overview.
Acta Numerica, 1:243-286, 1991.

190
A. Sarti and G. DePoli.
Toward nonlilnear wave digital filters.
IEEE Transactions on Signal Processing, pages 1654-1668, 1999.

191
L. Savioja and V. Välimäki.
Reduction of the dispersion error in the interpolated digital waveguide mesh using frequency warping.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 973-976, New York, March 1999.

192
L. Savioja and V. Välimäki.
Reducing the dispersion error in the digital waveguide mesh using interpolation and frequency-warping techniques.
IEEE Transactions on Speech and Audio Processing, 8(2):184-194, March 2000.

193
G. Scavone.
An Acoustic Analysis of Single-Reed Woodwind Instruments with an Emphasis on Design and Performance Issues and Digital Waveguide Techniques.
PhD thesis, Department of Music, Stanford University, 1997.

194
S. Schedin, C. Lambourg, and A. Chaigne.
Transient sound fields from impacted plates: Comparison between numerical simulations and experiments.
Journal of Sound and Vibration, 221(32):471-490, 1999.

195
W. Schottstaedt.
The simulation of natural instrument tones using frequency modulation with a complex modulating wave.
Computer Music Journal, 1(4):46-50, 1977.

196
S. Serafin, F. Avanzini, and D. Rocchesso.
Bowed string simulation using an elasto-plastic friction model.
In Proceedings of the Stockholm Musical Acoustics Conference, volume 1, pages 95-98, Stockholm, Sweden, August 2003.

197
X. Serra and J. O. Smith III.
Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition.
Computer Music Journal, 14(4):12-24, 1990.

198
G. R. Shubin and J. B. Bell.
A modified equation approach to constructing fourth order methods for acoustic wave propagation.
SIAM Journal of Scientific and Statistical Computing, 8:135-51, 1987.

199
J. Simo, N. Tarnow, and K. Wong.
Exact energy-momentum conserving algorithms for symplectic schemes for nonlinear dynamics.
Computer Methods in Applied Mechanics and Engineering, 100:63-116, 1992.

200
G. Smith.
Numerical Solution of Partial Differential Equations: Finite Difference Methods.
Clarendon Press, Oxford, third edition, 1985.

201
J. O. Smith III.
A new approach to digital reverberation using closed waveguide networks.
In Proceedings of the International Computer Music Conference, Vancouver, Canada, September 1985.
Appears in Technical Report STAN-M-39, pp. 1-7, Center for Computer Research in Music and Acoustics (CCRMA), Department of Music, Stanford University.

202
J. O. Smith III.
Efficient simulation of the reed-bore and bow-string mechanisms.
In Proceedings of the International Computer Music Conference, pages 275-280, The Hague, The Netherlands, 1986.

203
J. O. Smith III.
Viewpoints on the history of digital synthesis.
In Proceedings of the International Computer Music Conference, pages 1-10, Montreal, Canada, October 1991.

204
J. O. Smith III.
Waveguide simulation of non-cylindrical acoustic tubes.
In Proceedings of the International Computer Music Conference, pages 304-307, Montreal, Canada, 1991.

205
J. O. Smith III.
Physical modelling using digital waveguides.
Computer Music Journal, 16(4):74-91, 1992.

206
J. O. Smith III.
Efficient synthesis of stringed musical instruments.
In Proceedings of the International Computer Music Conference, pages 64-71, Tokyo, Japan, 1993.

207
J. O. Smith III.
Acoustic modeling using digital waveguides.
In C. Roads, S. Pope, A. Piccialli, and G. DePoli, editors, Musical Signal Processing, pages 221-263. Swets and Zeitlinger, Lisse, The Netherlands, 1997.

208
J. O. Smith III.
Digital waveguides vs. finite difference schemes: Equivalence and mixed modeling, 2004.
http://arxiv.org/abs/physics/0407032/.

209
J. O. Smith III.
Physical Audio Signal Procesing.
draft version, Stanford, CA, 2004.
Available online at http://ccrma.stanford.edu/~jos/pasp04/.

210
J. Strikwerda.
Finite Difference Schemes and Partial Differential Equations.
Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, California, USA, 1989.

211
H. Strube.
Time-varying wave digital filters and vocal-tract models.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 923-926, Paris, France, May 1982.

212
A. Stulov.
Hysteretic model of the grand piano hammer felt.
Journal of the Acoustical Society of America, 97:2577-85, 1995.

213
R. Szilard.
Theory and Analysis of Plates.
Prentice Hall, Englewood Cliffs, New Jersey, 1974.

214
N. Szilas and C. Cadoz.
Analysis techniques for physical modeling networks.
Computer Music Journal, 22(3):33-48, 1998.

215
A. Taflove.
Computational Electrodynamics.
Artech House, Boston, Massachusetts, USA, 1995.

216
A. Taflove.
Advances in Computational Electrodynamics.
Artech House, Boston, Massachusetts, USA, 1998.

217
O. Thomas, C. Touze, and A. Chaigne.
Asymmetric nonlinear forced vibrations of free-edge circular plates. part i. experiments.
Journal of Sound and Vibration, 265:1075-1101, 2003.

218
O. Thomas, C. Touze, and A. Chaigne.
Non-linear vibrations of free-edge thin spherical shells: Modal interaction rules and 1:1:2 internal resonance.
International Journal of Solids and Structures, 42:3339-3373, 2005.

219
T. Tolonen, V. Välimäki, and M. Karjalainen.
Evaluation of modern sound synthesis methods.
Technical Report 48, Laboratory of Acoustics and Audio Signal Processing, Helsinki University of Technology, March 1998.

220
T. Tolonen, V. Välimäki, and M. Karjalainen.
Modeling of tension modulation nonlinearity in plucked strings.
IEEE Transactions on Speech and Audio Processing, 8:300-310, May 2000.

221
C. Touze, O. Thomas, and A. Chaigne.
Asymmetric nonlinear forced vibrations of free-edge circular plates. Part I. Theory.
Journal of Sound and Vibration, 258(4):649-676, 2002.

222
L. Trautmann and R. Rabenstein.
Digital Sound Synthesis by Physical Modeling Using the Functional Transformation Method.
Kluwer Academic Publishers, 2003.

223
L. Trefethen.
Group velocity in finite difference schemes.
SIAM Review, 24:113-136, 1982.

224
L. Trefethen.
Instability of finite difference models for hyperbolic initial boundary value problems.
Communications on Pure and Applied Mathematics, 37:329-367, 1984.

225
L. Trefethen.
Spectral Methods in Matlab.
SIAM, Philadelphia, Pennsylvania, USA, 2000.

226
A. Tveito and R. Winther.
Introduction to Partial Differential Equations.
Springer, New York, 1998.

227
V. Välimäki and M. Karjalainen.
Digital waveguide modeling of wind instrument bores constructed of truncated cones.
In Proceedings of the International Computer Music Conference, pages 423-430, Arhus, Denmark, 1994.

228
V. Välimäki and M. Karjalainen.
Implementation of fractional delay waveguide models using allpass filters.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 8-12, Detroit, Michigan, USA, May 1995.

229
V. Välimäki, M. Laurson, and C. Erkut.
Commuted waveguide synthesis of the clavichord.
Computer Music Journal, 27(1):71-82, 2003.

230
V. Välimäki, J. Pakarinen, C. Erkut, and M. Karjalainen.
Discrete time modeling of musical instruments.
Reports on Progress in Physics, 69:1-78, 2005.

231
V. Välimäki, H. Penttinen, J. Knif, M. Laurson, and C. Erkut.
Sound synthesis of the harpsichord using a computationally efficient physical model.
EURASIP Journal on Applied Signal Processing, 69(7):934-948, 2004.

232
V. Välimäki, T. Tolonen, and M. Karjalainen.
Plucked-string synthesis algorithms with tension modulation nonlinearity.
In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 977-980, Phoenix, Arizona, USA, March 1999.

233
C. Vallette.
The mechanics of vibrating strings.
In A. Hirschberg, J. Kergomard, and G. Weinreich, editors, Mechanics of Musical Instruments, pages 116-183. Springer, New York, 1995.

234
S. A. van Duyne, J. R. Pierce, and J. O. Smith III.
Travelling wave implementation of a lossless mode-coupling filter and the wave digital hammer.
In Proceedings of the International Computer Music Conference, pages 411-418, Århus, Denmark, September 1994.

235
S. A. van Duyne and J. O. Smith III.
Physical modelling with the 2D digital waveguide mesh.
In Proceedings of the International Computer Music Conference, pages 40-47, Tokyo, Japan, September 1993.

236
S. A. van Duyne and J. O. Smith III.
A simplified approach to modelling dispersion caused by stiffness in strings and plates.
In Proceedings of the International Computer Music Conference, pages 407-410, Århus, Denmark, September 1994.

237
S. A. van Duyne and J. O. Smith III.
The 3D tetrahedral digital waveguide mesh with musical applications.
In Proceedings of the International Computer Music Conference, pages 9-16, Hong Kong, August 1996.

238
M. van Valkenburg.
Network Analysis.
Dover, New York, 1975.

239
M. van Walstijn and G. Scavone.
The wave digital tonehole model.
In Proceedings of the International Computer Music Conference, pages 465-468, Berlin, Germany, August 2000.

240
M.-P. Verge, A. Hirschberg, and R. Caussé.
Sound prodcution in recorderlike istruments: II A simulation model.
Journal of the Acoustical Society of America, 101:2925-2939, 1997.

241
C. Vergez and X. Rodet.
Dynamic systems and physical models of trumpet-like instruments: A study and asymptotical properties.
Acta Acustica united with Acustica, 86:147-162, 2000.

242
C. Vergez and X. Rodet.
A new algorithm for nonlinear propagation of sound wave: Application to a physical model of a trumpet.
Journal of Signal Processing, 4:79-88, 2000.

243
R. Vichnevetsky and J. Bowles.
Fourier Analysis of Numerical Approximations of Hyperbolic Equations.
SIAM, Philadelphia, 1982.

244
L. Vu-Quoc and S. Li.
Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation.
Computer Methods in Applied Mechanics and Engineering, 107:341-391, 1993.

245
J. Woodhouse.
Physical modeling of bowed strings.
Computer Music Journal, 16(4):43-56, 1992.

246
K. S. Yee.
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media.
IEEE Transactions on Antennas and Propagation, 14:302-307, 1966.

247
Y. Zhiming.
A nonlinear dynamical theory of non-classical plates.
Journal of Shangai University, 1(2):1-17, 1997.

248
D. Zicarelli.
How I learned to love a program that does nothing.
Computer Music Journal, 26(4):44-51, 2002.

249
D. W. Zingg.
Comparison of high-accuracy finite-difference methods for linear wave propagation.
SIAM Journal of Scientific Computing, 22(2):476-502, 2000.

250
D. W. Zingg and H. Lomax.
Finite-difference schemes on regular triangular grids.
Journal of Computational Physics, 108:306-313, 1993.



Stefan Bilbao 2006-11-15