next up previous contents
Next: Discrete-Time/Frequency Analysis Up: Lectures Previous: Physics Review


Vibrating Systems

Simple Harmonic Motion

  1. The Ideal Mass:

  2. The Ideal Spring:

  3. The Ideal Mass-Spring System:

    Figure 1: An ideal mass-spring system.
    \begin{figure}
\begin{center}
\epsfig {file=Figures/mass-spring.ps, width=2.5in} \end{center} \vspace{-0.25in}
\end{figure}

  4. Energy in the Ideal Mass-Spring System:

Damping

  1. The Ideal Mechanical Resistance:

  2. The Ideal Mass-Spring-Damper System:

    Figure 2: An ideal mass-spring-damper system.
    \begin{figure}
\begin{center}
\epsfig {file=Figures/msd.ps, width=3in} \end{center} \vspace{-0.25in}
\end{figure}

The Helmoltz Resonator

Figure 4: The Helmholtze Resonator and its mechanical correlate.
\begin{figure}
\begin{center}
\epsfig {file=Figures/helmholtz.ps, width=3in} \end{center} \vspace{-0.25in}
\end{figure}

A One-Mass, Two-Spring System

  1. Longitudinal Motion (along x-axis):

    Figure 5: A one-mass, two-spring system: Longitudinal motion.
    \begin{figure}
\begin{center}
\epsfig {file=Figures/mass-2spring.ps, width=3in} \end{center} \vspace{-0.25in}
\end{figure}

  2. Transverse Motion (along y-axis):

    Figure 6: A one-mass, two-spring system: Vertical motion.
    \begin{figure}
\begin{center}
\epsfig {file=Figures/mass-2spring-vert.ps, width=3in} \end{center} \vspace{-0.25in}
\end{figure}

A Two-Mass, Three-Spring System

  1. Longitudinal Motion (along x-axis):

    Figure 7: A two-mass, three-spring system: Longitudinal motion.
    \begin{figure}
\begin{center}
\epsfig {file=Figures/2mass-3spring.ps, width=4in} \end{center} \vspace{-0.25in}
\end{figure}


    \begin{displaymath}
m \frac{d^{2}x_{1}}{dt^{2}} + k x_{1} + k (x_{1} - x_{2}) = ...
... m \frac{d^{2}x_{2}}{dt^{2}} + k x_{2} + k (x_{2} - x_{1}) = 0
\end{displaymath}

Multiple Mass Systems



CCRMA ©1999 CCRMA, Stanford University. All Rights Reserved.
Maintained by Gary P. Scavone, gary@ccrma.stanford.edu.