Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Sinusoidal Modeling Systems

With the phase vocoder, the instantaneous amplitude and frequency are normally computed only for each ``channel filter''. A consequence of using a fixed-frequency filter bank is that the frequency of each sinusoid is not normally allowed to vary outside the bandwidth of its channel bandpass filter, unless one is willing to combine channel signals in some fashion which requires extra work. Ordinarily, the bandpass center frequencies are harmonically spaced. I.e., they are integer multiples of a base frequency. So, for example, when analyzing a piano tone, the intrinsic progressive sharpening of its partial overtones leads to some sinusoids falling ``in the cracks'' between adjacent filter channels. This is not an insurmountable condition since the adjacent bins can be combined in a straightforward manner to provide accurate amplitude and frequency envelopes, but it is inconvenient and outside the original scope of the phase vocoder (which, recall, was developed originally for speech, which is fundamentally periodic (ignoring ``jitter'') when voiced at a constant pitch). Moreover, it is relatively unwieldy to work with the instantaneous amplitude and frequency signals from all of the filter-bank channels. For these reasons, the phase vocoder has largely been effectively replaced by sinusoidal modeling in the context of analysis for additive synthesis of inharmonic sounds, except in constrained computational environments (such as real-time systems). In sinusoidal modeling, the fixed, uniform filter-bank of the vocoder is replaced by a sparse, peak-adaptive filter bank, implemented by following magnitude peaks in a sequence of FFTs. The efficiency of the split-radix, Cooley-Tukey FFT makes it computationally feasible to implement an enormous number of bandpass filters in a fine-grained analysis filter bank, from which the sparse, adaptive analysis filter bank is derived. An early paper in this area is included as Appendix H.

Thus, modern sinusoidal models can be regarded as ``pruned phase vocoders'' in that they follow only the peaks of the short-time spectrum rather than the instantaneous amplitude and frequency from every channel of a uniform filter bank. Peak-tracking in a sliding short-time Fourier transform has a long history going back at least to 1957 [210,281]. Sinusoidal modeling based on the STFT of speech was introduced by Quatieri and McAulay [221,169,222,174,191,223]. STFT sinusoidal modeling in computer music began with the development of a pruned phase vocoder for piano tones [271,246] (processing details included in Appendix H).


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Spectral Audio Signal Processing'', by Julius O. Smith III, W3K Publishing, 2011, ISBN 978-0-9745607-3-1.
Copyright © 2022-02-28 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA