Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

The Exponential Function

\begin{eqnarray*}
\mrr {e^x}{\isdef }{\displaystyle\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n}%
{e^x}{=}{\displaystyle\sum_{n=0}^\infty\frac{x^n}{n!}}
\mr {e^{j\theta}}{\cos(\theta)+j\sin(\theta)}%
{e^{jn\theta}}{\cos(n\theta)+j\sin(n\theta)}
\\ [10pt]
\mr {\sin(\theta)}{\frac{e^{j\theta}-e^{-j\theta}}{2j}}%
{\cos(\theta)}{\frac{e^{j\theta}+e^{-j\theta}}{2}}
\mrr {e}{=}{2.7\,1828\,1828\,4590\,\ldots}{}{}{}
\end{eqnarray*}


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work]  [Order a printed hardcopy]  [Comment on this page via email]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (September 2007 Edition)
Copyright © 2024-09-03 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA