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ABSTRACT

The lack of data is a major problem in individual HRTF mod-
eling. There are many HRTF databases, but each database
only has limited HRTFs with different characteristics, such as
distance-dependent HRTFs or individual HRTFs. How to ef-
fectively model HRTFs through several different databases is
an important task. In this paper, a method for predicting indi-
vidual distance-dependent HRTFs using a few anthropometric
parameters is proposed. By modeling the HRTFs in CIPIC
database, which contains individual HRTFs in 1 meter, and
the PKU&IOA database, which contains KEMAR HRTFs in
eight distances, we predict the individual HRTFs in arbitrary
directions and distances. The objective experiments show that
the proposed model has less spectral distortions than distance
variation function model. The subjective experiments show
that the proposed model can predict the individual HRTFs in
arbitrary directions and distances.

Index Terms— HRTF, SPCA, DNN, anthropometric pa-
rameters

1. INTRODUCTION

In recent years, spatial auditory display has gained attention
in both academic research and practical applications. To re-
alize the fidelity and immersive experience in binaural audio
reproduction, Head Related Transfer Functions (HRTF) are
often used as filters describing the sound transmission from a
sound source to the listeners’ eardrum. It is difficult to mea-
sure the high spatial resolution HRTFs for each potential user,
so non-individual HRTFs are often used to achieve spatial au-
dio system at present. However, this may lead to some per-
ception errors such as in-head localization, front-back con-
fusion, and a breakdown of elevation discrimination ability.
Therefore, it is important to obtain individual HRTFs with
high spatial resolutions.

In recent years, more and more researchers have concen-
trated on modeling individual HRTFs. Numerical calculation
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methods including the boundary element method (BEM) [1],
the finite element method (FEM) [2], and the finite difference
method (FDM) [3] can be used to model individual HRTFs.
However, these methods are computationally expensive and
depend on the availability of precise 3D geometry. The in-
dividual HRTFs can also be obtained based on the listeners’
feedback. Fink et al. [4] let subjects tune the PCA weights
from average HRTFs to obtain individual HRTFs. Neverthe-
less, the tuning procedure is very time-consuming for each
potential user. Xie [5] used spatial principal component anal-
ysis (SPCA) to recover individual HRTFs from measurements
at a few spatial directions; however, measuring individual
HRTFs in a few directions is still a non-trivial task.

A more feasible way is using a few anthropometric param-
eters to model individual HRTFs. Zotkin et al. [6] selected the
HRTF data of the subject whose anthropometric parameters
are closest to the new subject. Hu et al. [7] applied the princi-
pal component analysis (PCA) to HRTF amplitude spectrum
and used back-propagation artificial neural networks to map
the PCA weights of HRTFs to the selected anthropometric pa-
rameters. Chun et al. [8] used the deep neural network (DNN)
to map the anthropometric parameters to the head-related im-
pulse response (HRIR). Zhang et al. [9] used DNN models
based on spatial principal component analysis (SPCA) to pre-
dict HRTFs in arbitrary spatial directions. Those methods are
based on one database, specifically CIPIC database [10], and
can only predict HRTFs in 1 meter.

Since HRTF varies dramatically in near-field, there have
been measurements to obtain distance-dependent HRTFs
[11, 12], and algorithms and methods are proposed to model
HRTFs in near-field. Duda et al. [13] applied a rigid sphere
model to simulate sound propagation towards listener’s head.
Kan et al. [14] calculated a distance variation function (DVF),
using a model of the acoustic scattering for a point-source on
a rigid sphere, to apply to the HRTFs. Chen et al. [15] im-
plemented a more specific model with head, neck and torso
to model near-field HRTFs. Zhang et al. [16], used DNN
models based on SPCA to predict HRTFs in arbitrary spatial
distances.

In this paper, we are aiming to combine HRTFs in differ-
ent databases to model individual distance-dependent HRTFs.
We first apply the SPCA to HRTFs in CIPIC database, and
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the HRTFs can be represented by a weighted combination of
spatial principal components (SPCs) [5]. Then the HRTFs
in PKU&IOA database are preprocessed to align with the
statistics in CIPIC database. Through combining the indi-
vidual HRTF model [9] and the distance-dependent HRTF
model [16], we finally obtained the individual HRTFs in ar-
bitrary spatial directions and distances by measuring a few
anthropometric parameters.

The rest of the paper is organized as follows. In Section
2, the preprocessing of PKU&IOA database is presented. In
Section 3, the SPCA is introduced. In Section 4, individual
distance-dependent HRTF modeling is described. Section 5
gives the objective and subjective evaluations of the proposed
model. In section 6, the conclusion is presented.

2. PREPROCESSING OF PKU&IOA DATABASE

In order to combine the individual HRTF model [9] and the
distance-dependent HRTF model [16], we preprocess the raw
HRIRs in PKU&IOA database.

a. Re-sample HRIRs. Since the sampling rate of PKU&IOA
database is 65536Hz, and the sampling rate of CIPIC database
is 44100Hz, we re-sample the HRIRs in PKU&IOA database
to 44100Hz.

b. Change the length of HRIRs. The length of each HRIR
in PKU&IOA database is 1024 samples, and we change it to
200 samples as those in CIPIC database. Due to different start
time of HRIRs of different distances, we cut HRIRs from the
eight points prior to the maximum absolute value.

c. Transform HRIRs into the frequency domain. Fourier
transformation is applied to HRIRs to obtain HRTFs.

d. Transform HRTFs into a logarithmic scale. The ampli-
tude scale of the HRTFs are linear, and a logarithmic scale is
much closer to our auditory perception [17]. We then com-
pute the base 10 log-magnitude responses of HRTFs:

HRTFlog(θ, ϕ, r, f, s)
= 20log10(|HRTF (θ, ϕ, r, f, s)|).

(1)

To compare HRTFs in two databases, we randomly select a
HRTF of KEMAR with small ear in both databases. Fig.
1.(a) shows the comparison of HRTFs in elevation of 0 de-
grees, azimuth of 30 degrees, and distance of 1 meter for
two databases. Even though we re-sampled and changed the
length of the HRIRs in PKU&IOA database, the HRIRs in
two databases are still different. The reason for that is re-
searchers used different measuring methods and equipments
to measure HRTFs, so the mean and standard deviation of the
two databases are different. Therefore, we first calculate the
mean µpku and standard deviation σpku across the spatial di-
rections and subjects and normalize the HRTFs of PKU&IOA
database to obtain zero mean and unit variance.

Hlog(θ, ϕ, r, f, s) =
HRTFlog(θ, ϕ, r, f, s)− µpku(r, f)

σpku(r, f)
,

(2)

(a). before (b). after

Fig. 1. Comparison of HRTFs before and after aligning the
mean and standard deviation of the two databases.

After that, we calculate the mean µcipic and standard deviation
σcipic of CIPIC database. Finally, we make the normalized
HRTF data in PKU&IOA database have the same mean and
standard deviation as those in CIPIC database:

HRTFpku(θ, ϕ, r, f, s) =
Hlog(θ, ϕ, r, f, s)× σcipic(r, f) + µcipic(r, f).

(3)
Fig. 1.(b) shows the comparison of HRTFs after aligning the
mean and standard deviation. The amplitude of HRTFs of two
databases are much closer. To align the mean and standard de-
viation of all eight distances, we need a model to predict the
mean and standard deviation of different distances for CIPIC
database, which only contains 1 meter’s HRTFs. We use DNN
model in [16] to predict mean of different distances. For
standard deviation, we use the same DNN architecture as the
mean model’s. Specifically, the input of DNN is σpku(r0, f)
of distance r0 = 1m and target distance rd, and the ground
truth is σpku(rd, f). Based on the mean and standard deviation
models learned by PKU&IOA database, we can use the same
structures and parameters to estimate the mean and standard
deviation for CIPIC database. After that, we can calculate
HRTFpku of all eight distances by Eq. (3). Thus, the mean
and standard deviation of HRTFs in PKU&IOA database are
aligned with those in CIPIC database.

e. The means of HRTFpku are subtracted:

HRTFpku∆(θ, ϕ, r, f, s) =
HRTFpku(θ, ϕ, r, f, s)− µcipic(r, f).

(4)

f. The mean spatial functionHav is calculated. Hav is the
mean of HRTFpku∆ over frequencies and subjects.

Hav(θ, ϕ, r) =
1

NS

S∑
s=1

N∑
f=1

HRTFpku∆(θ, ϕ, r, f, s). (5)

3. SPATIAL PRINCIPAL COMPONENT ANALYSIS

The traditional PCA method is generally used in the time
or the frequency domain of HRTFs [18, 19], while SPCA is
applied to the spatial domain. The high spatial resolution



HRTFs are decomposed into the combination of SPCs and
SPCA weights [5]. To model individual distance-dependent
HRTFs, cq(r) is used to predict the relationship between the
SPCA weights of different distances [16]:

HRTFpku∆(θ, ϕ, r, f, s)

=
∑
q

dq,r0(f, s)cq(r)Wq(θ, ϕ) +Hav(θ, ϕ, r), (6)

where Wq is SPCs, which depends only on the source direc-
tion. ϕ is elevation angle, and θ is azimuth angle. dq, r is
SPCA weights which vary as functions of frequency f , indi-
vidual s and distance r. dq,r0 is the SPCA weights of distance
r0. Hav is the function of source direction and distance.

4. DISTANCE-DEPENDENT INDIVIDUAL HRTF
MODELING

Fig. 2 shows the framework of individual distance-dependent
HRTF modeling. We first performed SPCA to HRTFs in
CIPIC database, then SPCs, SPCA weights, and Hav are ob-
tained. By measuring a few anthropometric parameters, head
width, head depth, shoulder width, cavum concha height,
cavum concha width, fossa height, pinna height and pinna
width, we model SPCA weights and ITDs in 1 meter, and
Hav is also predicted in arbitrary spatial directions of 1
meter [9]. Due to the spatial directions contained in two
databases are different, Dc = 1250 directions in CIPIC
database and Dp = 793 directions in PKU&IOA database,
we use the SPCs modeling in [9] to predict the direction
vector of SPCs (DV-SPCs) in all the Dp directions and then
combine all the DV-SPCs into a Q×Dp matrix:

W =


W1(0), W1(1) . . . W1(Dp − 1)
W2(0), W2(1) . . . W2(Dp − 1)

...
...

...
...

WQ(0), WQ(1) . . . WQ(Dp − 1)

 , (7)

where W is composed of the first Q = 200 SPCs [9], and
DV-SPCs is a column of W and varies as a function of spa-
tial directions. The original W obtained by applying SPCA
to HRTFs in CIPIC database is a Q × Dc matrix. By pre-
dicting SPCs for PKU&IOA database using the data in CIPIC
database, we align SPCs of the two HRTF databases.

The HRTFs are measured in interaural-polar coordinate
system in CIPIC database but measured in spherical coor-
dinate system in PKU&IOA database. Therefore, we trans-
form the azimuth angle and the elevation angle in PKU&IOA
database to interaural-polar coordinate system. The transfor-
mation formulas are as follows:

sin(θ′) = sin(θ) sin(ϕ),

tan(ϕ′) = cot(ϕ) /cos(θ) ,
(8)

where θ and ϕ refer to the azimuth angle and the elevation
angle in spherical coordinate system respectively, and θ′ and

Fig. 2. The framework of individual distance-dependent
HRTF modeling.

ϕ′ are the azimuth angle and the elevation angle in interaural-
polar coordinate system respectively.

After transforming the angles, we predict DV-SPCs in all
the Dp directions and combine them into the Q×Dp matrix.
Then the HRTFs in PKU&IOA database are projected to the
combined SPCs. SPCA weights and Hav for PKU&IOA
database are then obtained. Through SPCA weights distance
modeling and Hav distance modeling [16], we obtained the
structures and parameters of DNN models for predicting
SPCA weights as well as Hav in arbitrary spatial distances.
Those structures and parameters we obtained through training
DNN models in PKU&IOA database can be used directly to
the SPCA weights and the Hav in CIPIC database, since we
aligned the mean and standard deviation of two databases and
also projected the PKU&IOA HRTFs to the SPCs obtained by
CIPIC database. At this time, we can predict SPCA weights
and Hav in arbitrary spatial distances for CIPIC database.

To sum up, by measuring a few anthropometric parame-
ters of an individual, we first predict its SPCA weights and
Hav in 1 meter using CIPIC database. By employing the
structures and parameters learned from PKU&IOA database,
we then predict SPCA weights and Hav in arbitrary spatial
distances. Thus, the HRTF magnitude of arbitrary spatial di-
rections and distances can be reconstructed by solving Eq.
6. The minimum phase reconstruction method is applied to
HRTF magnitudes to generate mono HRIRs [18]. Since ITD
only varies slightly when sound source moves from far-field
to near-field [20,21], we consider ITDs in arbitrary spatial dis-
tances are equal to the ITDs in distance of 1 meter. Finally,
binaural HRIRs in arbitrary spatial directions and distances
can be reconstructed.

5. EVALUATION EXPERIMENTS

5.1. Objective experiments

Our proposed model and DVF model [14] are evaluated by
spectral distortion (SD):

SD =

√√√√ 1

N

N∑
k=1

(20lg
|H(fk)|
|Ĥ(fk)|

)2, (9)



Fig. 3. Comparison of the SD between DVF model (left) and
the proposed model (right).

where H(fk) is the magnitude response of the HRTF from
PKU&IOA database (after the first two steps of preprocess-
ing), Ĥ(fk) is the magnitude response of the HRTF estimated
by DVF model or the proposed model.

The SD of the reconstructed HRTFs of KEMAR with
small ear is shown as Fig. 3. The abscissa values are 793
directions of eight distances, and the distance becomes larger
from left to right. Note that our proposed model projecting
HRTFs in 200 SPCs results in an average SD of 1.62 dB,
so this is the reason that the SD of all spatial locations in
our proposed model is larger than approximately 1.5 dB. SD
equaling zero in some spatial directions of DVF model is
because we use HRTFs at 1 meter to estimate HRTFs at other
spatial distances. The SD value is quite large for distances
close to the head in the DVF model, because a rigid sphere
model is used, and ignoring the details about human head
leads to a bad prediction performance when sound source is
closer to the head. The average SD of the proposed model in
all the sampled directions and distances is 2.34 dB, and the
average SD of DVF model is 3.79 dB. This demonstrates that
the proposed model is superior to DVF model.

5.2. Subjective experiments

The stimuli in this experiment is a train of eight 250-ms bursts
of Gaussian noise (20-ms cosine-squared onset-offset ramps),
with 300 ms of silence between the bursts. The HRIRs of
twelve azimuth angles (0, 30, 55, 80, 125, 150, 180, 210,
235, 280, 305, and 330 degrees) in three distances, 50, 100
and 160 centimeters, are generated by the proposed model.
Then, the stimulus is filtered by the HRTFs to obtain the vir-
tual sounds. A total of three azimuth localization experiments
are performed. The three experiments correspond to three
distances, 50, 100 and 160 centimeters, respectively. Be-
fore each experiment, the subject is trained using the sound of
other eight azimuth angles (0, 45, 90, 135, 180, 225, 270, and
315 degrees). Through listening to these sounds, the subject
can build up the spatial perception for the virtual sound. Af-
ter that, thirty-six binaural sounds are randomly played to the
subject by a Sennheiser HD 650 headphone through a Sound
Blaster sound card. The thirty-six sounds contain twelve di-

Fig. 4. Judged direction versus target direction of all sub-
jects for the distance of 50 (left), 100 (middle) and 160 (right)
centimeters. Each solid circle represents the amount of judg-
ments for a target angle. Size of circle is increased with the
judgments.

rections’ sounds, and each direction appears three times. The
subject gave the exact direction of each sound he/she per-
ceived during the experiments through an interface on a com-
puter. After each experiment, there are five minutes for a
break. Twelve subjects (10 male 2 female, age from 21 to
29) with normal hearing took part in the experiments. All
experiments were performed in a sound booth (Background
noise level : 20.9 dBA), with no light during the experiments.

Fig. 4 shows the results of localization experiments of all
twelve subjects in three distances respectively. The judgments
are plotted as a function of the coordinates of the targets.
There are 432 judgments shown in each panel, correspond-
ing to the thirty-six judgments made for each of the twelve
binaural sounds. Each solid circle represents the amount of
judgments for a target angle. Size of circle is increased with
the judgments. The average correction rates for the distance
of 50, 100 and 160 centimeters are 59.7%, 59.5%, and 58.6%
respectively. The average confusion rates for the distance of
50, 100 and 160 centimeters are 18.8%, 26.9%, and 29.2% re-
spectively. The average angle of errors for the distance of 50,
100 and 160 centimeters are 11.12, 11.06, and 11.27 degrees
respectively. Results show that our distance-dependent indi-
vidual HRTF modeling method effectively predicts HRTFs in
arbitrary spatial directions and distances.

6. CONCLUSION

The paper proposed an individual distance-dependent HRTF
modeling method based on CIPIC and PKU&IOA databases.
By combining the individual model and the distance-dependent
model, we predict HRTFs in arbitrary spatial directions and
distances. Objective experiments show that our proposed
model is superior to the DVF model. Subjective experiments
show that the HRTFs predicted by our proposed method are
effective. Therefore, by measuring a few anthropometric
parameters for an individual, we can predict its HRTFs in
arbitrary spatial directions and distances.
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