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ABSTRACT

In this paper, a method for modeling distance dependent head-
related transfer functions is presented. The HRTFs are first
decomposed by spatial principal component analysis. Using
deep neural networks, we model the spatial principal com-
ponent weights of different distances. Then we realize the
prediction of HRTFs in arbitrary spatial distances. The objec-
tive and subjective experiments are conducted to evaluate the
proposed distance model and the distance variation function
model, and the results have shown that the proposed model
has less spectral distortions than distance variation function
model, and the virtual sound generated by the proposed model
has better performance in terms of distance localization.

Index Terms— HRTF, SPCA, DNN, DVF, distance lo-
calization

1. INTRODUCTION

In recent years, spatial auditory display has gained attention
in both research area and practical applications. To realize
the fidelity and immersive experience in binaural audio repro-
duction, Head Related Transfer Functions (HRTF) are often
used as filters describing the sound transmission from a sound
source to the listeners’ eardrum. For sound sources with dif-
ferent locations (azimuth, elevation, distance), the character-
istics of HRTFs will vary accordingly; however, although the
far-field condition of sound sources (i.e. distance larger than
1m) could provide a good approximation to omit the influ-
ence of distance in HRTFs, the near-field effects, especially
the impacts of head, torso and pinnae, make HRTFs vary
drastically [1]. Therefore, it is important to consider HRTFs
as distance-dependent and further investigate the relation to
varying distances for precise sound localization in near-field.

Based on complex behaviors in near-field, there have
been measurements to obtain distance-dependent HRTFs [2],
and algorithms and methods are proposed to model HRTFs in
near-field. Researchers have examined binaural cues for near-
field sound localization and use them to synthesize HRTFs,
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such as the interaural level difference (ILD) [3, 4]. An “audi-
tory parallax model” was also proposed for HRTFs in near-
field, and then applied for HRTF simulation [5, 6]. Besides,
it was also noticed that the magnitude of near-field HRTF
plays a role in distance perception [7]. For the computation
model of near-field HRTF, a rigid sphere model was applied
to simulate sound propagation towards listener’s head [8], and
the Distance Variation Function (DVF) was then derived as a
distance filter to synthesize near-field HRTFs from far-field
ones [9–12]. A more specific model with head, neck and torso
was also implemented [13]. At the same time, effective in-
terpolation algorithms from measured HRTF databases were
also proposed. In [14], a framework using tetrahedral inter-
polation was given for interpolating HRTF measurements in
3-D locations; Huang et al. [15] proposed a tensor model to
represent distance-dependent HRTFs and the interpolation of
core tensors provided accurate HRTF prediction.

In our modeling for distance-dependent HRTFs in near-
field, we apply the spatial principal component analysis
(SPCA) to HRTFs, then the HRTFs can be represented by a
weighted combination of spatial principal components (short-
ened as SPCs) [16]. Through the deep neural network (DNN)
training, the spatial principal component weights (shortened
as SPCA weights) of different distances are estimated. After
that, we can combine the SPCs and the SPCA weights to
reconstruct distance-dependent HRTFs.

The rest of the paper is organized as follows. In Section
2, the spatial principal component analysis is discussed. In
Section 3, the distance modeling method based on SPCA is
described. Section 4 gives both the objective and subjective
evaluation of the proposed method. In section 5, the conclu-
sion is presented.

2. SPATIAL PRINCIPAL COMPONENT ANALYSIS

The traditional PCA method is generally used in the time or
frequency domain of HRTFs [17, 18]. In contrast to tradi-
tional PCA models, SPCA is applied to the spatial domain.
The high spatial resolution HRTFs are decomposed into the
combination of SPCs and the SPCA weights [16].

HRTF (θ, ϕ, f, s) =
∑
q

dq(f, s)Wq(θ, ϕ)+Hav(θ, ϕ) (1)
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where Wq and Hav are the SPCs and mean spatial function,
which depend only on the source direction. ϕ is the elevation
angle, and θ is the azimuth angle, dq is SPCA weights which
vary as functions of frequency f and individual s.

To model distance-dependent HRTFs, we use cq(r) to pre-
dict the relationship between the SPCA weights of different
distances. Then Eq. (1) can be rewritten as follows.

HRTF (θ, ϕ, r, f, s)

=
∑
q

dq,r0(f, s)cq(r)Wq(θ, ϕ) +Hav(θ, ϕ, r) (2)

where dq,r0(f, s) is the SPCA weights of distance r0, and
Hav is the function of source direction and distance.

The HRTFs used in this paper are derived from the
PKU&IOA database [2], which contains HRTFs of S = 2
subjects, KEMAR with large and small ear, measured in
D = 793 directions of R = 8 distances. The number of
frequency points is 1024, and the sampling rate is 65536 Hz.
After applying SPCA to the HRTFs, we select the preced-
ing Q SPCs. In this paper, the first 100 SPCs are selected,
and 92.27% of the total variability can be attained after the
reconstruction [19, 20].

3. DISTANCE-DEPENDENT MODELING OF HRTFS

3.1. Outline

Fig. 1 depicts the framework of distance-dependent modeling
of HRTFs. The SPCA weights and the mean spatial function
of different distances are modeled respectively. After that,
the selected SPCs, the corresponding SPCA weights and the
mean spatial function can be used to recover HRTF magnitude
in each sampled direction of arbitrary distances.

The phase of HRTFs is reconstructed based on two as-
sumptions that HRTFs are “minimum-phase” functions and
the frequency dependence of ITD is of no perceptual rele-
vance [17]. Therefore, the minimum-phase reconstruction
method is used to generate mono HRIRs [17], and then the
binaural HRIRs are predicted.

3.2. Preprocessing

The raw HRIRs are preprocessed as follows.
Firstly, transform the HRIRs into the frequency domain.

Fourier transformation is applied to the raw HRIRs to obtain
the HRTFs.

Secondly, transform the HRTFs into a logarithmic scale.
The amplitude scale of the HRTFs are linear, and a loga-
rithmic scale is much closer to our auditory perception [21].
Compute the base 10 log-magnitude responses of HRTFs,
which is denoted as HRTFlog.

HRTFlog(θ, ϕ, r, f, s)
= 20log10(|HRTF (θ, ϕ, r, f, s)|)

(3)

Fig. 1. The framework of distance-dependent HRTF model-
ing.

Fig. 2. The architecture of DNN for predicting the SPCA
weights of different distances.

Thirdly, the mean of all the logarithmic HRTFs is sub-
tracted from each HRTFlog , and the result, i.e. HRTFlog∆,
is decomposed by the SPCA.

µ(r, f) =
1

D × S
∑
s

∑
θ

∑
ϕ

HRTFlog(θ, ϕ, r, f, s) (4)

HRTFlog∆(θ, ϕ, r, f, s)
= HRTFlog(θ, ϕ, r, f, s)− µ(r, f)

(5)

Finally, calculate the mean spatial function, i.e. Hav ,
which is the mean of HRTFlog∆ over frequencies and sub-
jects.

Hav(θ, ϕ, r) =
1

NS

S∑
s=1

N∑
f=1

HRTFlog∆(θ, ϕ, r, f, s) (6)

3.3. Modeling of SPCA weights

Fig. 2 shows the architecture of DNN for the SPCA weights
modeling. The input of DNN is the SPCA weights dq,r0(fk, sm)



of distance r0 = 1m and the target distance rd. The ground
truth is the SPCA weights dq,rd(fk, sm) of the target distance
rd. sm(m = 1, 2) and fk(k = 1, 2, ..., 200) are the KEMARs
and the frequency points, respectively. There are S ×N ×R
sets of SPCA weights, and we split it into the training set, val-
idation set and test set. Each set contains the SPCA weights
of all the distances. The mean and variance of the test set and
validation set were normalized using the training set statistics
to have zero mean and unit variance. Each DNN is set five
layers which had a better prediction performance. Both the
activation function and the output function are set hyperbolic
tangent and the learning rate is 0.001.

The reconstruction error is used to test the DNN model-
ing:

ed,rd(fk, sm) =

∑
q
|d̂q,rd(fk, sm)− dq,rd(fk, sm)|∑

q
|dq,rd(fk, sm)|

(7)

where d̂q,rd(fk, sm) is estimated by DNN model, and ed,rd
(fk, sm) is the reconstruction error of the SPCA weights for
KEMAR sm at the frequency fk and distance rd. The calcu-
lated ed,rd in all the frequencies and individuals are smoothly
distributed in 0.2 to 0.3.

3.4. Modeling of mean spatial function

The modeling of the mean spatial functions is similar to the
prediction of the SPCA weights. This model is also based
on DNN. The input of DNN is the Hav(θ, ϕ, r0) of distance
r0 = 1m and the target distance rd. The ground truth is the
Hav(θ, ϕ, rd) of the target distance rd. To guarantee the vari-
ability of the test data, we make all the training set, validation
set and test set uniformly distributed in space. The mean and
variance of the test set and validation set were normalized us-
ing the training set statistics to have zero mean and unit vari-
ance. The modeled DNN are set five layers, the activation
function and the output function are set hyperbolic tangent,
and the learning rate is 0.001.

After training the DNNs, we can predict Hav(θ, ϕ, rd) in
arbitrary spatial distance rd. Mean square error (MSE) is used
to calculate the reconstruction error of the mean spatial func-
tions. And the result eH is equal to 0.195.

eH =
1

D

∑
θ

∑
φ

(Ĥav(θ, φ)−Hav(θ, φ))
2 (8)

3.5. Modeling of mean

Due to the magnitude of HRTF is attenuated when the spa-
tial distance becomes larger, we build a model to estimate the
mean of HRTF in different distances, which is calculated in
Eq.(4). The modeling of the mean is similar to the prediction
of the SPCA weights and the mean spatial functions. This

Fig. 3. Comparison of the log-amplitude of the real (left) and
the reconstructed (right) HRTFs of KEMAR with small ear.

model is based on DNN as well. The input of DNN is the
µ(r0, fk) of distance r0 = 1m and the target distance rd.
The ground truth is the µ(rd, fk). There are N × R sets of
means, and we split it into the training set, validation set and
test set. Each set contains µ in all the distance. The mean and
variance of the test set and validation set were normalized us-
ing the training set statistics to have zero mean and unit vari-
ance. The modeled DNN are set five layers, the activation
function is hyperbolic tangent, and the output function is set
linear function for high frequency attenuation. The learning
rate is 0.006.

After training the DNNs, the mean in desired distance for
each frequency bin can be predicted. The MSE of the esti-
mated mean is 0.42.

3.6. Recovery of HRIRs

To reconstruct the HRIRs, we first model the SPCA weights,
the mean spatial functions and the means, respectively. The
distance is introduced into the input layer of the DNN models,
so that we can predict these parameters in arbitrary spatial dis-
tances efficiently. The HRTF magnitude of different distances
can be reconstructed by solving the Eq. 2. Fig. 3 shows com-
parison of the real and the reconstructed HRTFs of KEMAR
with small ear. It depicts the horizontal plane at the distance
of 50 cm. The similarity of their global shapes indicates that
the reconstructed HRTF magnitudes are desired.

The minimum phase reconstruction method is then em-
ployed to the HRTF magnitudes to generate the mono HRIRs
[17]. Since ITD only varies slightly when the source moves
from far-field to near-field [1, 22], so we consider the ITDs
in arbitrary spatial distances are equal to the ITDs in distance
r0 = 1m. Therefore, the binaural HRIRs in arbitrary spatial
distances can be recovered.

4. EVALUATION EXPERIMENTS

To evaluate the effectiveness of our proposed method, we car-
ried out objective and subjective experiments for HRTFs pre-
dicted by the proposed model and HRTFs estimated by DVF
model [9].



Fig. 4. Comparison of the SD between DVF model (left) and
the proposed model (right).

4.1. Objective experiments

The spectral distortion (SD) is used as an objective evaluation
metric between modeled and measured HRTF data.

SD =

√√√√ 1

N

N∑
k=1

(20lg
|H(fk)|
|Ĥ(fk)|

)2 (9)

where H(fk) is the magnitude response of the measured
HRTF from the PKU&IOA database, Ĥ(fk) is the magnitude
response of the estimated HRTF.

The SD of the reconstructed HRTFs of KEMAR with
small ear is shown as Fig. 4. Note that our proposed model
selecting the first 100 SPCs results in an average SD of
1.56dB, so this is the reason that the SD of all spatial loca-
tions in our proposed model is larger than approximately 1
dB. SD equals zero in some spatial directions of DVF model
is because we use HRTFs at 1 meter to estimate those at other
spatial distances. The average SD of the proposed model in
all the sampled directions and distances is 2.41dB, and the
average SD of DVF model is 5.12 dB. This demonstrates that
the proposed model is superior to the DVF model.

4.2. Subjective experiments

For the subjective evaluation, twelve subjects (10 male 2 fe-
male, age from 21 to 29) with normal hearing took part in
the experiments. All experiments were performed in a sound
booth (Background noise level : 20.9 dBA).

The stimuli in this experiment was a train of eight 250-
ms bursts of Gaussian noise (20-ms cosine-squared onset-
offset ramps), with 300 ms of silence between the bursts. The
HRIRs of six distances, 20, 30, 50, 80, 120 and 160 cm, are
generated by the proposed model and the DVF model, respec-
tively. Note that the HRIRs of two distances, 80 and 120 cm,
are not contained in the PKU&IOA database. Then the stim-
ulus are filtered by the HRIRs produced by the two models
to create two kinds of sounds. A total of two experiments
are performed, and each experiment corresponds to a kind of
sound generated by one method. The subject should tell the
exact distance of each sound he/she heard during the exper-
iment. Before each experiment, the subject is trained using

the test sound of other six distances, 20, 40, 75, 100, 130
and 160 cm. Through listening these sounds, the subject can
build up the distance perception for this kind of virtual sound.
After that, eighteen binaural sounds are randomly played to
the subject by a Sennheiser HD 650 headphone. The eigh-
teen sounds contain sounds at six distances and each distance
appears three times. The subject can listen to one sound for
many times until he/she can tell the exact direction.

Figure 5 shows the results of the distance localization ex-
periments of all the twelve subjects. The judgments are plot-
ted as a function of the coordinates of the targets. The left col-
umn and the right column depict the judgments using the DVF
model and the proposed model respectively. There are 216
judgments shown in each panel, corresponding to the thirty-
six judgments made to each of six binaural sounds. Each solid
circle in the image represents the amount of judgments for a
target angle. As the legend illustrates, the size of the solid
circle represents the number of judgments. For example, the
biggest solid circle in the legend represents thirty judgments
for a fixed distance. The correct answer is on the diagonal
line. The localization performance of the proposed model is
better than the DVF model. The proposed model has more
solid circles with bigger sizes falling upon the diagonal line.
This means a higher precision of localization and also indi-
cates the proposed model can better reconstruct the HRTFs in
arbitrary spatial distances.

Fig. 5. Judged distance versus target distance of all subjects
using the DVF model (left) and the proposed model (right).
Each solid circle represents the amount of judgments for a
target angle. Size of circle is increased with the judgments.

5. CONCLUSION

The paper proposed the distance-dependent HRTF modeling
method based on spatial principal component analysis. By
modeling the SPCA weights, mean spatial function and mean
using DNN respectively, we reconstruct the HRTFs of arbi-
trary spatial distances. The objective and subjective experi-
ments are carried out to evaluate the HRTFs generated by the
proposed model and DVF model. Results show our proposed
model is superior than the DVF model in both objective and
subjective experiments.
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