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ABSTRACT

Ambisonics is a promising spatial sound technique in augmented and virtual reality. In our previous study, we
modeled the individual head-related transfer functions (HRTFs) using deep neural networks based on spatial
principal component analysis. This paper proposes an individualized HRTF-based binaural renderer for the
higher-order Ambisonics. The binaural renderer is implemented by filtering the virtual loudspeaker signals using
individualized HRTFs. We perform subjective experiments to evaluate generic and individualized binaural renderers.
Results show that the individualized binaural renderer has front-back confusion rates that are significantly lower
than those of the generic binaural renderer. Therefore, we validate that using individualized HRTFs to convolve
with those virtual loudspeaker signals to generate virtual sound at an arbitrary spatial direction still performs
better than those using generic HRTFs. In addition, by measuring or modeling individual’s HRTFs in a small set
of directions, our proposed binaural renderer system effectively predict individual’s HRTFs in arbitrary spatial
directions.

1 Introduction

Ambisonics is a versatile surround sound recording and
reproduction technique. The binaural rendering pro-
cess assigns Ambisonics signals to headphones, which
produce the target sound field perceived by listeners.
Some works contribute to this topic. Noisternig et al.
[1] presented a computationally efficient 3D real time
rendering engine for binaural sound reproduction via
headphones. Rumori [2] designed a Girafe, which is
a versatile, modular software system for projects us-
ing Ambisonics or the binaural virtual Ambisonics ap-
proach. Tylka and Choueiri [3] implemented a toolkit
for ambisonics-to-binaural renderers for the ambiX bin-

aural plug-in, which enables the user to generate cus-
tom binaural rendering configurations. Hold et al. [4]
analyzed the effects of truncating the spherical harmon-
ics representation of a binaurally rendered sound field
and proposed a method that reduces coloration. Zhang
et al. [5] improved the performances of higher-order
Ambisonics (HOA) by learning features of sound fields
with the generative adversarial network (GAN).

Head-related transfer function (HRTF) is an acoustic
function for sound waves modified by the human struc-
ture, such as the head, ears, and torso. A prevalent
method to implement binaural rendering uses virtual
loudspeakers to combine the Ambisonics and HRTFs to
construct the sound field. However, localization error
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exists during the perception due to the accuracy limi-
tation of Ambisonics and the low performance of the
non-individualized HRTFs. Nevertheless, directly mea-
suring HRTFs for each listener is complicated. Thus,
modeling individual HRTFs is very important and en-
hances the performances of the binaural rendering.

More researchers have modeled individual HRTFs.
Brown et al. [6] separated the effects of different phys-
iological structures on HRTF, modeling each part with
a low-order sub-filter and combining all sub-filters to
represent HRTF. Middlebrooks [7] used the frequency
scaling method, assuming that the HRTF spectral char-
acteristics of diverse listeners are similar but the cor-
responding frequencies of spectral characteristics are
different. Through the frequency scaling method, Mid-
dlebrooks obtained new subject’s HRTFs. Zotkin et
al. [8] selected the HRTF data from a subject whose
anthropometric parameters were closest to the new sub-
ject. Jin et al. [9] separately applied the principal com-
ponent analysis (PCA) to both the HRTF amplitude
spectrum and the anthropometric parameters and then
constructed a linear mapping from the PCA weights of
the anthropometric parameters to the PCA weights of
HRTFs. Hu et al. [10] used back-propagation artificial
neural networks to map the PCA weights of HRTFs
to the selected anthropometric parameters. Chun [11]
used the deep neural network (DNN) to map the an-
thropometric parameters to the head-related impulse
response (HRIR). Zhang [12, 13, 14] used DNN models
based on spatial principal component analysis (SPCA)
to predict HRTFs in arbitrary spatial directions and
distances.

In this paper, we propose an individualized HRTF based
binaural renderer using our previous work in modeling
individual HRTFs [12]. We aim to validate the individ-
ualized binaural renderer performs better than generic
binaural renderer after decoding the HOA signals to
loudspeaker signals and then convolving loudspeaker
signals with HRTFs. In addition, though generating
individualized HRTFs in a small set of directions, we
build a system to generate individualized virtual sound
in arbitrary spatial directions. Our paper is organized
as follows. In Section 2, we describe the basic HOA
theory and the binaural rendering process. In Section
3, we model individual HRTFs using DNN based on
SPCA. In Section 4, we present our subjective experi-
ments and analyze the results. In section 5, we present
our conclusion.

2 HOA and Binaural Renderer Basis

HOA is a spatial sound technique based on the superpo-
sition of spherical harmonic functions. The sound field
will be encoded into HOA signals with a certain order,
and then the decoding process transforms HOA sig-
nals to loudspeaker signals, which could be directly fed
into real loudspeakers, or be treated as sound sources
spatially distributed in virtual scenes. In the latter, a
binaural renderer combines these signals into a two-
channel binaural signal for headphones.

2.1 HOA Principles

Considering a specific HOA signal Bm
n of order n and

degree m, the spherical harmonic function Y m
n , [15, 16],

is described as

Y m
n (θ ,ϕ) =

√
(2n+1)(2−δ0,m)

(n−|m|)!
(n+|m|)! P|m|n (sinϕ)

×
{

sin(−mθ), i f m < 0
cos(mθ), i f m≥ 0

(1)
where Pm

n (sinϕ) is the associated Legendre functions,
and δ0,m is the Kronecker delta function. θ and ϕ refer
to the azimuth and elevation in a head-related spherical
coordinate system [17]. The origin of the coordinate
system is the midpoint of a line drawn between the
upper margins of the entrances to the two ear canals.

The sound field with no interior sources is expressed in
the Fourier-Bessel series:

p(kr,θ ,ϕ) =
∞

∑
n=0

in jn(kr)
n

∑
m=−n

Bm
n Y m

n (θ ,ϕ), (2)

where jn(kr) is the spherical Bessel function of the
first kind, and Bm

n is the spherical harmonic component
signal (HOA signal). k is the wave number, r is the
radius, and p is the sound pressure. Since the practical
HOA has a finite order, n is limited to the maximum
order N.

The HOA signal Bm
n is derived from the encoding pro-

cess, and the usual ways of constructing sound fields
to be encoded include virtual sound field simulation
and real HOA recordings. Then, the decoding of HOA
signals is processed. Moreau et al. gave a more specific
description of HOA encoding and decoding processes
[16].

AES 150th Convention, Online, 2021 May 25–28
Page 2 of 7



Zhang et al. Individualized Binaural Renderer

2.2 HOA Decoder

The decoding process converts HOA signals into mul-
tiple loudspeaker signals. Consider a sound source q
emitting a plane wave g from the direction (θq,ϕq),
which is the far field condition of the sound source.
The sound pressure p is approximated in the N-order
spherical harmonic expansion as follows:

p = g
N

∑
n=0

in jn(kr)
n

∑
m=−n

Y m
n (θq,ϕq)Y m

n (θ ,ϕ). (3)

Hence, the HOA signal of a plane wave source convey-
ing signal g with order n and degree m is expressed as
follows:

Bm
n = gY m

n (θq,ϕq). (4)

Then, the target HOA signals B =
[
B0

0,B
−1
1 , . . . ,Bm

n
]

are decoded into several loudspeaker signals. Sup-
pose there are L loudspeakers in space with directions
(θ1,ϕ1), . . . ,(θL,ϕL), each conveying a plane wave sig-
nal si. B is estimated with the superposition of the HOA
components of signals g = [g1,g2, . . . ,gL]:

BBB = ggg ·DDD (5)

From Eq.4, the matrix D has the following form:

DDD =


Y 0

0 (θ1,ϕ1) . . . Y N
N (θ1,ϕ1)

Y 0
0 (θ2,ϕ2) . . . Y N

N (θ2,ϕ2)
...

. . .
...

Y 0
0 (θL,ϕL) . . . Y N

N (θL,ϕL)

 . (6)

The signals of loudspeakers are derived as

ggg = BBB ·CCC, (7)

where the decoding matrix CCC is the pseudo-inverse of
the matrix DDD:

CCC = (DDDtDDD)−1YYY t . (8)

Especially noteworthy is that this solution is often im-
precise, and its approximation error from the pseudo-
inverse option is dependent on the spatial distribution
of the loudspeakers, more specifically, on the discrete
orthogonality of spherical harmonics. The algorithm
performs better when the loudspeakers are evenly dis-
tributed, for example, in a polyhedron pattern. Other
patterns such as a pentakis-dodecahedron with 32 po-
sitions were also examined [16]. Also, the maximum
order is determined by the number of loudspeakers. To
achieve an N-order HOA decoding process, the number
of loudspeakers should be larger than (N +1)2 [16].

Fig. 1: The scheme of conversion from HOA signals
to binaural signals.

2.3 Binaural Renderer

In the renderer, the loudspeaker signals from decoding
process are fed into virtual loudspeakers evenly placed
on a spherical surface, and then the binaural signals
are created by accumulating the virtual loudspeakers’
signals, which are filtered by the HRTFs corresponding
to the virtual loudspeakers’ spatial directions. The bin-
aural signals to the left and right channels of headphone
are obtained:

gle f t =
L

∑
l=1

gl ∗HRIRle f t , (9)

gright =
L

∑
l=1

gl ∗HRIRright , (10)

where gle f t and gright identify the binaural signals.
HRIR is the time domain expression of HRTF, and
the symbol ∗ is the convolution operator.

Fig.1 describes the conversion from HOA signals to
binaural signals.

3 Modeling of Individual HRTFs

HRTF is an acoustic function of a sound signal’s fre-
quency, direction, and distance and an individual’s mor-
phology. The HRTF represents the acoustic cues for a
sound at a certain position, which are processed by the
auditory system. In binaural rendering, non-individual
HRTFs lead to some perception errors such as in-head
localization, front-back confusion, or breakdown of
elevation discrimination ability [18]. Thus, we use the
individualized HRTFs to improve the performance of
the binaural renderer. We derive the raw HRIRs from
the CIPIC database [19]. The HRTFs are modeled
based on SPCA using deep neural networks [12].

Fig. 2 depicts the framework of individual HRTF mod-
eling. The SPCA weights, the spatial principal compo-
nents (SPCs), and the Hav are obtained by decomposing
HRTFs using SPCA. Then, those parameters and ITDs
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Fig. 2: The framework of individual HRTF modeling
[12].

are respectively modeled . The SPCA weights are ob-
tained by modeling the individual’s morphology since
the SPCA weights vary as functions of anthropometric
parameters and frequency. Eight anthropometric param-
eters, head width, head depth, shoulder width, cavum
concha height, cavum concha width, fossa height, pinna
height, and pinna width, are selected to represent the
human morphology. Thus, the SPCA weights for any
individual outside the database are estimated from the
individual’s eight anthropometric parameters. Those
anthropometric parameters are captured by taking pic-
tures. Since the SPCs and the Hav depend only on the
source direction, we model them using DNNs to pre-
dict new values in arbitrary spatial directions. Since the
ITDs are influenced by both anthropometric parame-
ters and the spatial directions, we use head dimensions
to model a new individual’s ITDs with arbitrary spa-
tial directions by training DNNs. Accordingly, HRTF
magnitudes of arbitrary spatial directions are recov-
ered using the predicted SPCs, SPCA weights, and
Hav. Then the minimum-phase reconstruction method
is used to generate mono HRIRs [20]. Finally, binau-
ral HRIRs are obtained using estimated ITDs and the
corresponding left and right mono HRIRs.

In summation, through taking some photos of an in-
dividual, we capture a quantity of anthropometric pa-
rameters to reconstruct an individual’s binaural HRIRs
with arbitrary spatial directions.

4 Subjective Experiments

4.1 Settings

We perform subjective experiments to evaluate both the
generic renderer and the individualized renderer. The
generic HRIR set is chosen to be the CIPIC KEMAR
with small ears. For the HOA decoding process, the

Fig. 3: Twenty vertices of a regular dodecahedron.

3-order HOA is performed, and the virtual loudspeak-
ers are positioned at the twenty vertices of a regular
dodecahedron, as is shown in Fig. 3. The HOA sig-
nals are decoded to virtual loudspeaker signals with
the plane-wave assumption, and then each loudspeaker
signal is convoluted with generic HRIR and individu-
alized HRIR with the same spatial direction. The 20
directions of HRIR are chosen from the CIPIC database
to be the nearest with the directions of 20 vertices in
the dodecahedron. Note that the azimuth angle and the
elevation angle in the CIPIC database are measured
in a head-centered interaural-polar coordinate system.
Thus, we convert the directions of 20 vertices in the do-
decahedron into an interaural-polar coordinate system
and then choose the closest directions. The transforma-
tion formulas are as follows:

sin(θ ′) = sin(θ)cos(ϕ),

tan(ϕ ′) = tan(ϕ)
/

cos(θ) ,
(11)

where θ and ϕ refer to the azimuth angle and the el-
evation angle in the head-related spherical coordinate
system respectively, and θ ′ and ϕ ′ are the azimuth
angle and the elevation angle in the interaural-polar
coordinate system respectively. Next , we obtain two
different binaural renderers, the generic renderer and
the individualized renderer.

4.2 Procedure

Our experiments compare the azimuth localization per-
formance of the individualized renderer and the generic
renderer for headphones. The stimulus in this experi-
ment is a train of eight 250-ms bursts of Gaussian noise
(20-ms cosine-squared onset-offset ramps), with 300
ms of silence between the bursts, and the sampling rate
is 44.1kHz. The stimulus, given a certain direction,
is first encoded to 3-order HOA signals, on which the
decoding and rendering processes generate binaural
signals that are played to the subjects.
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Two azimuth localization experiments are performed
at two elevations (0 and 15 degrees). Each experiment
randomly includes two tests for spatial localization.
One tests the individualized renderer; the other tests
the generic renderer. For each test, 36 binaural sig-
nals (twelve azimuths each appearing three times) are
randomly played by a Sennheiser HD 650 headphone
through a RME FireFace UCX sound card. The twelve
azimuths are 0, 30 60, 90, 120, 150, 180, 210, 240, 270,
300, and 330 degrees. Subjects give the exact direction
based on the sound they heard through a graphical user
interface (GUI) on a computer. Each experiment in-
cludes a five-minute break. Twelve subjects (9 male, 3
female, ages 25 to 37) with normal hearing participate.
All the experiments are performed in a sound booth.

4.3 Results

Fig. 4 shows the results of the localization experi-
ments for all twelve subjects at two elevation angles.
The judgments are plotted as a function of the targets’
coordinates. The left and right columns depict the judg-
ments using the generic and SPCA renderers. Each
panel shows 432 judgments, corresponding to the 36
judgments for the twelve binaural sounds. The localiza-
tion performance of the SPCA renderer is better than
that of the generic renderer since the judgments are
more closely gathered near the diagonal line.

The averages of all the subjects’ localization experi-
ments are shown in Table 1. The average front-back
confusion rates of the individualized renderer are 8.8%
and 10.4% smaller than the front-back confusion rates
of the generic renderer at elevations of 0 and 15 de-
grees respectively. The average angles of error of the
two renderers at both elevations are similar. Bartlett’s
test shows the variances are equal in all the conditions
(p > 0.05). T-tests show the front-back confusion rate
of the individualized renderer is significantly lower
than that of the generic renderer at both the elevation
of 0 (p < 0.05) and 15 degrees (p < 0.05), and the
difference in the angle of error of the two renderers is
insignificant at both the elevation of 0 (p = 0.37) and
15 degrees (p = 0.58). Therefore, the performance of
the individualized renderer is better than that of the
generic renderer.

5 Conclusion

In this paper, we propose an individualized HRTF-
based binaural renderer for HOA. First, individualized

Fig. 4: Judged direction versus target direction of all
subjects with the generic renderer (left column)
and the individualized renderer (right column)
in elevation of 0 degrees (top row) and 15 de-
grees (bottom row). Two oblique lines with a
slope of 135 degrees correspond to the front-
back confusions.

HRTFs modeled with DNN based on SPCA are cal-
culated. Second, we use generic HRTFs and individ-
ualized HRTFs to filter the virtual loudspeaker sig-
nals, then we obtain two kinds of binaural renderers.
The subjective experiments are performed to evaluate
both the individualized and generic renderers. The sub-
jective experiments’ results show that the front-back
confusion rates of the individualized renderer are sig-
nificantly lower than the generic renderer. Therefore,
our paper effectively validates that the individualized
binaural renderer performs better than generic binaural
renderer after decoding the HOA signals to loudspeaker
signals and then convolving loudspeaker signals with
HRTFs. Our system shows that by decoding HOA
signals to loudspeaker signals, we use individualized
HRTFs in a small set of directions to effectively gener-
ate virtual sound in arbitrary spatial directions.
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Table 1: The averages of the localization experiments.

Elevation
(Deg)

Renderer
type

Front-back
confusion
rate (%)

Angle of
error
(Deg)

0
Generic 34.5 17.8

Individualized 25.7 19.4

15
Generic 37.5 19.9

Individualized 27.1 18.8

(No.61175043, No.61421062), and the High-
performance Computing Platform of Peking Univer-
sity.
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