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Abstract

Natural language inference is a fundamental
task in natural language understanding. Be-
cause of the understanding required to assess
the relationship between two sentences, it can
provide rich, generalized semantic representa-
tions. In this study, we implement a sentence-
encoding model using recurrent neural net-
works. Our hypothesis was that semantic role
labels, along with GloVe word embeddings,
would give the sentences rich representations,
making the model not only more successful on
the original SNLI challenge, but also more ro-
bust to adversarial examples. However, our
findings show that adding the SRL informa-
tion does not improve the performance of our
baseline model on either the SNLI task or the
adversarial data sets.

1 Problem and Related Work

Natural language inference (NLI) is the problem
of determining whether a hypothesis sentence H
follows from a premise sentence P. NLI is a fun-
damental task in natural language understanding
because of the understanding required to assess
the relationship between two sentences. It has ap-
plications in many tasks, including question an-
swering, semantic search, and automatic text sum-
marizing. It is an ideal testing ground for theo-
ries of semantic representation, and the training
for NLI tasks can provide rich, generalized seman-
tic representations. NLI has been addressed using
a variety of techniques, including symbolic logic,
knowledge bases, and, in recent years, neural net-
works (Bowman et al., 2015). The landscape of
NLI models is shown in Figure 1.

(Bowman et al., 2015) proposes a straight-
forward architecture of deep neural networks for
NLI. In their architecture, the premise and the hy-
pothesis are each represented by a sentence em-
bedding vector. The two vectors are fed into a

multi-layer neural network to train a classifier. It
achieved an accuracy of 77.6% using LSTM net-
works on the SNLI corpus.

(Rocktschel et al., 2016) improves the afore-
mentioned LSTM model by applying a neural at-
tention model. The basic architecture is the same
as (Bowman et al., 2015), which is based on sen-
tence embeddings for the premise and the hypoth-
esis. The key difference, which (Rocktschel et al.,
2016) uses to improve performance, is that the em-
bedding of the premise takes into consideration the
alignment between the premise and the hypothe-
sis. This attention-weighted representation of the
premise improves the model performance to an ac-
curacy of 83.5%.

One limitation of the model proposed by (Rock-
tschel et al., 2016) is that it reduces both the
premise and the hypothesis to a single embed-
ding vector before matching them. Thus, it uses
two embedding vectors to perform sentence-level
matching in the end. However, not all word or
phrase-level matching results are equally impor-
tant, and this model does not explicitly differen-
tiate between good and bad matching results be-
tween the premise and the hypothesis. For ex-
ample, matching of stop words is presumably less
important than matching of content words. Ad-
ditionally, some matching results may be particu-
larly critical for making the final prediction. For
example, a mismatch of the subjects of two sen-
tences may be sufficient to indicate that they are
not entailment, but this intuition is hard to capture
if two sentence embeddings are matched in their
entirety.

To address the limitations of the models pro-
posed by (Bowman et al., 2015) and (Rock-
tschel et al., 2016), (Wang and Jiang, 2016) pro-
poses a special LSTM-based architecture called
match-LSTMs. Instead of using whole sentence
embeddings for the premise and the hypothesis,



Figure 1: NLI model landscape

this model uses an LSTM to perform word-by-
word matching between the hypothesis with the
premise. The LSTM sequentially processes the
hypothesis, matching each word in the hypothe-
sis with an attention-weighted representation of
the premise. This LSTM is able to place more
emphasis on important word-level matching re-
sults. In particular, this LSTM remembers im-
portant mismatches that are critical for predicting
the contradiction or the neutral relationship label.
On the SNLI corpus, the match-LSTM architec-
ture achieve an accuracy of 86.1%.

Different from (Wang and Jiang, 2016) using at-
tention in conjunction with LSTMs, (Parikh et al.,
2016) uses attention purely based on word em-
beddings. This model consists of feed-forward
networks which operate largely independently of
word order. Advantages of this model include the
simple neural architecture and the way attention
is used to decompose the problem into indepen-
dently solvable sub-problems, facilitating paral-
lelization. On the SNLI corpus, a new state-of-the-
art was established at 86.8% accuracy, with almost
an order of magnitude fewer parameters than the
previous state-of-the-art, LSTMN (Cheng et al.,
2016) and without relying on word-order.

The power of LSTMs and attention is well-
known across a variety of tasks. However, one
piece of the puzzle that most of the top results
on the SNLI leaderboard share that these previ-
ous models do not have is the incorporation of
pre-trained contextual word embeddings, such as
ELMO or BERT. Combining these embeddings

with a very deep network (Kim et al., 2018), with
multitask learning (Liu et al., 2019), or with se-
mantic knowledge (Zhang et al., 2018) leads to the
best results.

Due to limited time and resources, the base-
line for our NLI project is a pair of bidirectional
LSTMs, one each for the premise and the hypothe-
sis. Recurrent neural networks (RNNs) are a well-
understood model for sentence encoding. They
process input text sequentially and model the con-
ditional transition between word tokens. The ad-
vantages of recursive networks include that they
explicitly model the compositionality and the re-
cursive structure of natural language, while the
current recursive architecture is limited by its de-
pendence on syntactic tree (Munkhdalai and Yu,
2017). In (Munkhdalai and Yu, 2017), a syn-
tactic parsing-independent tree structured model,
called Neural Tree Indexers (NTI), provides a mid-
dle ground between the sequential RNNs and syn-
tactic tree-based recursive models. This model
achieved the state-of-the-art performance on three
different NLP tasks: natural language inference,
answer sentence selection, and sentence classifi-
cation. In (Chen et al., 2017), RNN-based sen-
tence encoder equipped with intra-sentence gated-
attention composition achieved the top perfor-
mances on both the RepEval-2017 and the SNLI
dataset.

Intuitively, including information about the sen-
tence structure, such as part of speech or seman-
tic role labels (SRL), should improve performance
on NLI challenges. Several research teams have



Table 1: Examples from SNLI dataset, shown with both the selected gold labels and the full set of labels (abbrevi-
ated) from the individual annotators.

found this to be true (Zhou and Xu, 2015; Shi
et al., 2016). The SRL task is generally for-
mulated as multi-step classification subtasks in
pipeline systems, consisting of predicate identifi-
cation, predicate disambiguation, argument identi-
fication, and argument classification (Zhang et al.,
2018). An end-to-end system for SRL using deep
bi-directional recurrent network is proposed by
(Zhou and Xu, 2015). Using only the original
text as input, this system outperforms the previous
state-of-the-art model. Additionally, this model
is computationally efficient and better at handling
longer sentences than traditional models (Zhou
and Xu, 2015).

2 Data

2.1 SNLI Dataset

The Stanford SNLI dataset (SNLI) is a freely
available collection of 570,000 human-generated
English sentence pairs, manually labeled with one
of three categories: entailment, contradiction, or
neutral. It constitutes one of the largest, high-
quality, labeled resources explicitly constructed
for understanding sentence semantics. SNLI is the
basis for much of the recent machine learning re-
search in the NLI field.

There was a longstanding limitation in NLI
tasks that corpora are too small for training mod-
ern data-intensive, wide-coverage models. SNLI
remedies this as a new, large-scale, naturalistic
corpus of sentence pairs labeled for entailment,
contradiction, and independence. The differences
between SNLI and many other resources are as
follow: At 570,152 sentence pairs, it is two or-
ders of magnitude larger than the next largest NLI
dataset. Its sentences and labels were written by
humans in a grounded, naturalistic context rather

than algorithmically generated; It uses a subset of
the resulting sentences on validation task to pro-
vide a reliable set of annotations over the same
data and to identify areas of inferential uncertainty
(Bowman et al., 2015).

Amazon Mechanical Turk was used for data
collection —workers were presented with premise
scene descriptions from a preexisting corpus and
were asked to supply hypotheses for each of
three labels: entailment, neutral, and contradiction
(Bowman et al., 2015). Each pair of sentences are
possible captions for the same image. If the two
are labeled for entailment, it means that the sec-
ond caption is consistent with the information in
the first. A label of contradiction indicates that the
two captions cannot possibly label the same pic-
ture. A third class of neutral allows for indepen-
dent captions that might coexist (Bowman et al.,
2015). Table 1 shows a set of randomly chosen ex-
amples from the SNLI dataset. Both the selected
gold labels and the full set of labels (abbreviated)
from the individual annotators are described. A
gold label means if any one of the three labels was
chosen by at least three of the five annotators, then
this label will be the gold label.

2.2 Adversarial Datasets

2.2.1 Compositionality-Sensitivity Test

NLI model should understand both lexical and
compositional semantics. Adversarial datasets
can be used to test whether the model can
sufficiently capture the compositional nature of
sentences (Nie et al., 2018). Two types of
adversarial datasets—SOSWAP adversaries and
ADDAMOD adversaries—were used to test the
compositionality-sensitivity. Two examples for
the two types of adversarial data are illustrated in



Figure 2: Examples of SOSWAP and ADDAMOD Adversarial Data (Nie et al., 2018). On the left, the swapped
subject and object are marked in yellow in p′. On the right, the added adjective modifier is marked in yellow in h.

Figure 2. In SOSWAP, the subject and object of
a sentence are switched. In ADDAMOD, an ad-
jective is moved from one noun to another. The
semantics of the sentences are modified through
perturbing the compositionality without changing
any lexical features. The intuition behind the ad-
versarial datasets is that, while the semantic differ-
ence resulting from compositional change is ob-
vious for humans, the two input sentences will
be almost identical for models that take no com-
positional information into consideration. There-
fore, by running the model on the adversarial test
sets, we can evaluate whether the model is able to
consider compositional information. Additionally,
there are 971 SOSWAP examples—most of which
are contradictions—and 1,783 ADDAMOD exam-
ples—most of which are neutral—in this data set.

2.2.2 Generalization Ability Test

The data created by (Glockner et al., 2018) con-
tains one additional type of adversarial example.
These examples are formed by taking a premise
from the SNLI data set and replacing one word
with either a synonym, hyponym, antonym, or
co-hyponym. The first two create an entailment
example, and the latter two create a contradic-
tion. Table 2 shows examples from the adversar-
ial dataset, where the examples can capture vari-
ous kinds of lexical knowledge. This dataset can
be used to assess the lexical inference abilities of
NLI systems, and it is available at https://
github.com/BIU-NLP/Breaking_NLI.

All of the replacement words are present in the
SNLI data set and in the pre-trained GLoVe em-
beddings used. This set consists of 7,164 contra-
diction examples, 982 entailment examples, and
47 neutral examples.

Table 2: Examples from Breaking NLI dataset

3 Methodology

3.1 Sentence-encoding RNNs

SNLI is suitably large and diverse to make it pos-
sible to train neural network models that produce
distributed representations of sentence meaning
(Bowman et al., 2015).

Sentence embedding is used as an intermediate
step in the NLI classification and producing sen-
tence representations. First, vector representations
for each of the two sentences are produced, then
these two vectors are passed to a linear classifier,
which predicts the label for the pair.

Our recurrent neural network classifier, de-
picted in Figure 3, processes the premise and hy-
pothesis with separate RNNs and uses the con-
catenation of their final states as the basis for
the classification decision at the top. Words are
embedded using 100-dimensional GloVe embed-
dings and processed sequentially in a BiDirec-
tional LSTM with a hidden dimension of 50. The
premise and hypothesis final states are concate-
nated and passed to a softmax layer for classifica-
tion. Much of code for this baseline model comes
from (Potts, 2019).

The model is trained on the SNLI Training set
and evaluated on the SNLI Test set, as well as the
three adversarial sets described previously: AD-
DAMOD, SOSWAP, and BreakingNLI. Due to the

https://github.com/BIU-NLP/Breaking_NLI
https://github.com/BIU-NLP/Breaking_NLI


Figure 3: Architecture of the Sentence-encoding Baseline Model (Potts, 2019)

overhead required for extracting the SRL tags, the
SNLI training set was reduced to 267,379 exam-
ples. For the other data sets, including SNLI dev
and test, all examples were pre-processed and used
for evaluation.

3.2 Semantic Role Labeler

Semantic role labeling, which is a technique that
has been used in state-of-the-art SNLI models
(Zhang et al., 2018), encodes important grammat-
ical aspects of a sentence that go beyond simple
part-of-speech tagging or word embeddings. SRL
can lead not only to top SNLI performance, but
may also make a model more robust to adversar-
ial modifications to the SNLI data set. Given a
sentence, the task of semantic role labeling is ded-
icated to recognizing the semantic relations be-
tween the predicates and the arguments. For ex-
ample, given the sentence, Charlie sold a book to
Sherry last week, where the target verb (predicate)
is sold, SRL yields the following outputs,

[ARG0 Charlie] [V sold] [ARG1 a book]

[ARG2 to Sherry] [AMTMP last week]

where ARG0 represents the seller (agent), ARG1
represents the thing sold (theme), ARG2 repre-
sents the buyer (recipient), AM T M P is an ad-
junct indicating the timing of the action and V rep-
resents the predicate. (Zhang et al., 2018)

The state-of-the-art SRL module implemented
by (Zhang et al., 2018) consists of an embed-
ding layer, which includes ELMO and PIE em-
beddings; an 8-layer, interleaved, Bi-Directional
LSTM with highway connections and dropout;
and a softmax output layer which predicts SRL

Figure 4: Architecture of the Semantic Role Labeler

tags (Zhang et al., 2018). This architecture can
be seen in Figure 4.

In our work, we make use of the readily avail-
able SRL model from AllenNLP. Each sentence
is parsed into tokens according to the AllenNLP
WordTokenizer, and annotated with the SRL
tags for each token. The words are embedded with
50-dimensional GloVe embeddings, and the SRL
tags are included in a 50-dimensional embedding
structure. Each word is represented as the con-
catenation of its GloVe and SRL embeddings. The
resulting representation for each word in the input
is then a 100-dimensional embedding, just as in
the baseline model. See Figure 5 for the enhanced
architecture.

Figure 5: Architecture of the SRL-Enhanced Model



Table 3: Baseline and SRL Results on SNLI.

Category Baseline Precision (%) SRL Precision (%) Baseline F1-Score SRL F1-Score
Contradiction 0.373 0.314 0.326 0.010

Entailment 0.426 0.353 0.490 0.389
Neutral 0.467 0.334 0.429 0.426

Macro-Average 0.422 0.334 0.415 0.275

Table 4: Baseline and SRL Results on Adversarial Datasets.

Dataset Prominent Label Baseline Recall SRL Recall
ADDAMOD Neutral 0.920 0.864

SOSWAP Contradiction 0.076 0.083
Breaking NLI Macro-Average 0.365 0.319

In order to save time during training and iterat-
ing, we used a pre-processing script that ran each
SNLI example’s sentence1 and sentence2
through the AllenNLP SRL module and saved the
tags for later use.

4 Results and Discussion

We first evaluated both the baseline LSTM and
the SRL-augmented models against the SNLI task
to determine whether standard SNLI performance
improves as a result of SRL. These results can be
seen in Table 3. Next, both systems were evaluated
on the SOSWAP dev set, ADDAMOD dev set,
and the Breaking NLI adversarial set. Since the
ADDAMOD and SOSWAP sets consist of primar-
ily one label, we evaluate performance of the two
systems based on the recall for only Neutral and
Contradiction classifications, respectively. These
results are shown in Table 4.

The results show that the model with SRL em-
beddings actually performed worse than the model
using only GloVe embeddings. However, we be-
lieve this is less due to the inability of SRL to
enhance a model, and more to do with this par-
ticular architecture. One of the key drawbacks
of the baseline model is that it does not include
an attention mechanism. Adding attention to the
model would likely allow the semantic role la-
bels from the premise and the hypothesis to inter-
act with each other similarly to the way in which
cross-sentence word attention would. However,
the SRL-enhanced embeddings would help to fur-
ther cement connections or contradictions between
the two sentences. For example, if a word and its
synonym were in the premise and the hypothesis,
and they shared a semantic role label, this cross-

sentence attention would likely classify these sen-
tences correctly. Further, if a word appeared in
both the premise and the hypothesis, but it had un-
related semantic role labels, the attention mecha-
nism may be able to differentiate between these
meanings, improving upon models which overem-
phasize word co-occurence.

Another avenue to explore would be the embed-
ding style. In this study, we ensured that the em-
bedding dimension for each word was the same
in both the baseline and the SRL-enhanced model.
In the former, this meant using 100-dimensional
GloVe embeddings, while in the latter, we used
50-dimensional GloVe embeddings and 50 dimen-
sions for the SRL tag embedding. In hindsight,
this gave our baseline model much more represen-
tational power for the words themselves, and may
have put the SRL-enhanced model at a relative dis-
advantage.

5 Conclusion and Future Work

Although Semantic Role Labels have proven to be
a useful feature in some NLI models, for our par-
allel, bidirectional LSTMs with GloVe word em-
beddings, SRL decreased performance both in the
nominal SNLI evaluations, as well as in adversar-
ial data sets. However, we believe that SRL could
give the right model significant performance gains
not only on the SNLI test set, but also make the
model more robust to adversarial NLI examples.
We recommend exploring the performance of the
model in (Zhang et al., 2018), in particular against
the adversarial data sets described here.
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