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Abstract

Music genre labels are useful to organize songs, albums, and artists into broader groups
that share similar musical characteristics. In this work, an approach to learn and combine
multimodal data representations for music genre classification is proposed. Intermediate rep-
resentations of deep neural networks are learned from audio tracks, text reviews, and cover
art images, and further combined for classification. Experiments on single and multi-label
genre classification are then carried out, evaluating the effect of the different learned repre-
sentations and their combinations. Results on both experiments show how the aggregation
of learned representations from different modalities improves the accuracy of the classifica-
tion, suggesting that different modalities embed complementary information. In addition, the
learning of a multimodal feature space increase the performance of pure audio representa-
tions, which may be specially relevant when the other modalities are available for training, but
not at prediction time. Moreover, a proposed approach for dimensionality reduction of target
labels yields major improvements in multi-label classification not only in terms of accuracy,
but also in terms of the diversity of the predicted genres, which implies a more fine-grained
categorization. Finally, a qualitative analysis of the results sheds some light on the behavior
of the different modalities in the classification task.
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1. Introduction problematic for several reasons. First, there may be

The advent of large music collections has posed the
challenge of how to retrieve, browse, and recommend
their containing items. One way to ease the access of
large music collections is to keep tag annotations of
all music resources (Sordo, 2012). Annotations can
be added either manually or automatically. However,
due to the high human effort required for manual an-
notations, the implementation of automatic annotation
processes is more cost-effective.

Music genre labels are useful categories to organize
and classify songs, albums, and artists into broader
groups that share similar musical characteristics. Mu-
sic genres have been widely used for music classifica-
tion, from physical music stores to streaming services.
Automatic music genre classification thus is a widely
explored topic (Sturm, 2012; Bogdanov et al., 2016).
However, almost all related work is concentrated in the
classification of music items into broad genres (e.g.,
Pop, Rock) using handcrafted audio features and as-
signing a single label per item (Sturm, 2012). This is
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hundreds of more specific music genres (Pachet and
Cazaly, 2000), and these may not necessarily be mu-
tually exclusive (e.g., a song could be Pop, and at the
same time have elements from Deep House and a Reg-
gae groove). Second, handcrafted features may not
fully represent the variability of the data. By con-
trast, representation learning approaches have demon-
strated their superiority in multiple domains (Bengio
et al., 2013). Third, large music collections contain
different modalities of information, i.e., audio, images,
and texts, and all these data are suitable to be ex-
ploited for genre classification. Several approaches
dealing with different modalities have been proposed
(Wu et al., 2016; Schedl et al., 2013). However, to the
best of our knowledge, no multimodal approach based
on deep learning architectures has been proposed for
this Music Information Retrieval (MIR) task, neither
for single-label nor multi-label classification.

In this work, we aim to fill this gap by propos-
ing a system able to predict music genre labels using
deep learning architectures given different data modal-
ities. Our approach is divided into two steps: (1) A
neural network is trained on the classification task for
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each modality. (2) Intermediate representations are
extracted from each network and combined in a mul-
timodal approach. Experiments on single-label and
multi-label genre classification are then carried out,
evaluating the effect of the learned data representa-
tions and their combination.

Audio representations are learned from time-
frequency representations of the audio signal in form
of audio spectrograms using Convolutional Neural Net-
works (CNNs). Visual representations are learned us-
ing a state-of-the-art CNN (ResNet) (He et al., 2016),
initialized with pretrained parameters learned in a
general image classification task (Russakovsky et al.,
2015), and fine-tuned on the classification of music
genre labels from the album cover images. Text rep-
resentations are learned from music related texts (e.g.,
album reviews) using a feedforward network over a
Vector Space Model (VSM) representation of texts, pre-
viously enriched with semantic information via entity
linking (Oramas, 2017).

A first experiment on single-label classification is
carried out from audio and images. In this experiment,
in addition to the audio and visual learned representa-
tions, a multimodal feature space is learned by aligning
both data representations. Results show that the fusion
of audio and visual representations improves the per-
formance of the classification over pure audio or visual
approaches. In addition, the introduction of the multi-
modal feature space improves the quality of pure audio
representations, even when no visual data are available
in the prediction. Next, the performance of our learned
models is compared with those of a human annotator,
and a qualitative analysis of the classification results
is reported. This analysis shows that audio and visual
representations seem to complement each other. In ad-
dition, we study how the visual deep model focuses its
attention on different regions of the input images when
evaluating each genre.

These results are further expanded with an experi-
ment on multi-label classification, which is carried out
over audio, text, and images. Results from this ex-
periment show again how the fusion of data repre-
sentations learned from different modalities achieves
better scores than each of them individually. In addi-
tion, we show that representation learning using deep
neural networks substantially surpasses a traditional
audio-based approach that employs handcrafted fea-
tures. Moreover, an extensive comparison of different
deep learning architectures for audio classification is
provided, including the usage of a dimensionality re-
duction technique for labels that yields improved re-
sults. Then, a qualitative analysis of the multi-label
classification experiment is finally reported.

This paper is an extended version of a previous con-
tribution (Oramas et al., 2017a), with the main novel
contributions being the addition of a single-label genre
classification experiment where the differences among
modalities are further explored, and a deeper qualita-

tive analysis of the results is carried on. This paper is
structured as follows. We review the related work in
Section 2. In Section 3 we describe the representation
learning approach from audio, images, and text with
deep learning systems, and the multimodal joint space.
Section 4 describes the fusion of multiple modalities
into a single model and its potential benefits. Then,
in Section 5 we describe the multi-label classification
problem. In Section 6 the experiments on single-label
classification are presented. Then, in Section 7 the ex-
periments on multi-label classification are reported. In
Section 8 we conclude our paper with a short summary
of our findings.

2. Related work

Most published music genre classification approaches
rely on audio sources (for an extensive review on the
topic, please refer to Sturm (2012); Bogdanov et al.
(2016)). Traditional techniques typically use hand-
crafted audio features, such as Mel Frequency Cepstral
Coefficients (MFCCs) (Logan, 2000), as input to a ma-
chine learning classifier (e.g., SVM, k-NN) (Tzanetakis
and Cook, 2002; Seyerlehner et al., 2010a; Gouyon
et al., 2004). More recent deep learning approaches
take advantage of visual representations of the audio
signal in form of spectrograms. These visual repre-
sentations of audio are used as input to Convolutional
Neural Networks (CNNs) (Dieleman et al., 2011; Diele-
man and Schrauwen, 2014; Pons et al., 2016; Choi
et al., 2016a,b), following approaches similar to those
used for image classification.

Text-based approaches have also been explored for
this task. For instance, one of the earliest attempts on
classification of music reviews is described in Hu et al.
(2005), where experiments on multi-class genre classi-
fication and star rating prediction are described. Simi-
larly Hu and Downie (2006) extend these experiments
with a novel approach for predicting usages of music
via agglomerative clustering, and conclude that bigram
features are more informative than unigram features.
Moreover, part-of-speech (POS) tags along with pat-
tern mining techniques are applied in Downie and Hu
(2006) to extract descriptive patterns for distinguish-
ing negative from positive reviews. Additional textual
evidence is leveraged in Choi et al. (2014), who con-
sider lyrics as well as texts referring to the meaning
of the song, and used for training a kNN classifier for
predicting song subjects (e.g., love, war, or drugs). In
Oramas et al. (2016a), album reviews are semantically
enriched and classified among 13 genre classes using
an SVM classifier.

There are few papers dealing with image-based mu-
sic genre classification (Libeks and Turnbull, 2011).
Regarding multimodal approaches found in the litera-
ture, most of them combine audio and song lyrics (Lau-
rier et al., 2008; Neumayer and Rauber, 2007). Other
modalities such as audio and video have been explored
(Schindler and Rauber, 2015). In McKay and Fujinaga
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(2008) cultural, symbolic, and audio features are com-
bined for music classification.

Multi-label classification is a widely studied prob-
lem in other domains (Tsoumakas and Katakis, 2006;
Jain et al., 2016). In the context of MIR, tag classi-
fication from audio (or auto-tagging) has been stud-
ied from a multi-label perspective using traditional ma-
chine learning approaches (Sordo, 2012; Wang et al.,
2009; Turnbull et al., 2008; Bertin-Mahieux et al.,
2008; Seyerlehner et al., 2010b), and more recently
using deep learning approaches (Choi et al., 2016a;
Dieleman and Schrauwen, 2014; Pons et al., 2017).
However, there are few approaches for multi-label clas-
sification of music genres (Sanden and Zhang, 2011;
Wang et al., 2009), and none of them is based on rep-
resentation learning approaches nor multimodal data.

3. Learning data representations

3.1 Audio representations

The use of CNNs and audio spectrograms has be-
come a standard in MIR (Dieleman et al., 2011; Choi
et al.,, 2016a). Following this principle, we have
designed a convolutional architecture to predict the
genre labels from the audio spectrogram of a song.
Spectrogram representations are typically contained in
R7*N matrices with F frequency bins and N time
frames. In this work we compute F = 96 fre-
quency bins, log-compressed constant-Q transforms
(CQT) (Schorkhuber and Klapuri, 2010) for all the
tracks in our dataset using librosa (Mcfee et al.,
2015) with the following parameters: audio sampling
rate at 22050 Hz, hop length of 1024 samples, Hann
analysis window, and 12 bins per octave. We randomly
sampled one 15-seconds long patch from each track,
resulting in the fixed-size input to the CNN. The deep
model trained with these data is defined as follows:
the CQT patches are fed to a series of convolutional
layers with rectified linear units (ReLU) as activations
followed by max pooling layers. The output of the last
convolutional layer is flattened and connected to the
ouptut layer. The activations of the last hidden layer
constitute the intermediate audio representation used
in our multimodal approach. More details on the ar-
chitectures used and the training process are detailed
in Sections 6.2 and 7.3.1.

3.2 Visual representations

Deep Residual Networks (ResNets) (He et al., 2016)
are a specific type of CNNs that have become one
of the best architectures for several image classifica-
tion tasks (Russakovsky et al., 2015; Lin et al., 2014).
ResNet is a feedforward CNN with residual learning,
which consists on bypassing two or more convolution
layers (similar to previous approaches (Sermanet and
LeCun, 2011)). This addresses the underfitting prob-
lem originated when using a high number of layers,
thus allowing for very deep architectures. We use the

original ResNet! architecture, where the scaling and
aspect ratio augmentation are obtained from Szegedy
et al. (2015), the photometric distortions from Howard
(2013), and weight decay is applied to all weights and
biases (i.e., not focusing on convolutional layers only).
Our network is composed of 101 layers (ResNet-101),
initialized with pretrained parameters learned on Ima-
geNet. This is our starting point to fine-tune (Razavian
et al., 2014; Yosinski et al., 2014) the network on the
genre classification task. More details about training
process are reported in Sections 6.2 and 7.3.3. The
activations of the last hidden layer of the ResNet be-
come the visual representation used in our multimodal
approach.

3.3 Text representations

Given a text describing a musical item (e.g., artist bi-
ography, album review), a process of semantic enrich-
ment is firstly applied. To semantically enrich texts,
we adopt Babelfy, a state-of-the-art tool for entity link-
ing (Moro et al.,, 2014). Entity linking is the task
to associate, for a given textual fragment candidate
(e.g., an artist name, a place), the most suitable entry
in a reference Knowledge Base. Babelfy maps words
from a given text to BabelNet (Navigli and Ponzetto,
2012), returning the BabelNet URI of every identified
entity. In addition to Babelfy, we use EIVIS (Oramas
et al., 2016b), an entity linking integration framework,
which retrieves the corresponding Wikipedia? URL and
categories given a BabelNet URI. In Wikipedia, cate-
gories are used to organize resources, and they help
users to group articles of the same topic. We take all
the Wikipedia categories of entities identified in each
document and add them at the end of the text as new
words. We apply then a VSM with tf-idf weighting (Zo-
bel and Moffat, 1998) over the enriched texts. Note
that either words or categories may be part of the vo-
cabulary in the VSM. From this representation, a feed
forward network with two dense layers of 2048 neu-
rons and a Rectified Linear Unit (ReLU) after each
layer is trained to predict the genre labels (the training
process of this network is described in detail in Sec-
tion 7.3.2). Dropout with a factor of 0.5 is applied af-
ter the input and each one of the dense layers. The last
hidden layer becomes the text representation of each
musical item.

Although word embeddings (Mikolov et al., 2013)
with CNNs are state-of-the-art in many text processing
tasks (Kim, 2014), a traditional VSM with a feed for-
ward network is used instead, as it has been shown to
perform better when dealing with large music-related
texts and high dimensional outputs (Oramas et al.,
2017b).

Finally, one may argue that if text representations
are available, genre information is likely to be acces-
sible as well, thus making the task of automatic genre

lhttps://github.com/facebook/fb.resnet.torch/
2http://wikipedia.org
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classification redundant. While this might be true in
some cases, genre information provided by external
sources will unlikely comply with the current taxon-
omy of the collection to be classified, thus a mapping
of sorts will be required in such instances. Moreover,
it might also be unlikely to have multiple genre labels
per release, making a stronger case to further employ
as much data as possible (e.g., audio, visual, text) to
further refine the potential genre(s) of each item in
the catalog, regardless of whichever potential genres
might be externally given (which can, too, become a
new different modality).

3.4 Multimodal feature space

Given data representations from two different modal-
ities, we design a neural model that learns to embed
them in a new multimodal space that better optimizes
their similarity. Using a deep learning approach to
learn a multimodal space has been previously used, in
particular for textual and visual modalities (Srivastava
and Salakhutdinov, 2012; Yan and Mikolajczyk, 2015).
Our model can be described as follows: let a and v
be two representation vectors of a song obtained from
different data modalities (e.g., audio and video), we
embed them in a shared space. Formally:

e,(a) = Wyo tanh (W, a)

e,(v) = Wya tanh(W,1v)

where W,,, are weight matrices of the = modality (i.e.,
a or v) from the n-th layer and tanh is the element-wise
hyperbolic tangent function, added as a non-linear
component of the network. We then iterate over each
song and learn the two modality embeddings by mini-
mizing the loss defined by the cosine distance:

LT =1—cos(eq.(a),e,(v))

where cos(+, -) is the cosine similarity between two vec-
tors.

Moreover, for each song we select two random neg-
ative samples (Mikolov et al., 2013): r, and r, from
each modality. We want a and v to be distant from r,
and r,, respectively. This negative sampling avoids the
problematic situation where the network maps all vec-
tors to a single point (making L™ = 0, but producing
an useless mapping). We define the loss for the nega-
tive samples as:

L, = max(0, cos(eq(ry),e,(v)) —m)
for one modality and, analogously, for the other modal-
ity part:

-

» = max(0, cos(ey(a),e,(r,)) —m)

where m, the margin, is the scalar between 0 and 1
that indicates the importance of the negative samples

(i.e., if 0, the negative sample is fully considered in the
loss, whereas if 1, this sampling is ignored). We found
that 0.5 was the best performing margin setting®.

To summarize, given two different modality vectors
of a song, the final loss that the multimodal network
minimizes is:

L=L"+L;+L,

The resulting multimodal features from the networks
e, and e, are composed of 200 dimensions each.

4. Multimodal fusion

We aim to combine all of these different types of
data into a single model. There are several works
claiming that learning data representations from dif-
ferent modalities simultaneously outperforms systems
that learn them separately (Ngiam et al., 2011; Dorfer
et al., 2016). However, experiments in Oramas et al.
(2017b) reflect the contrary. They have observed, for
instance, that deep networks are able to quickly find
an optimal minimum from text data. However, the
complexity of the audio signal can significantly slow
down the training process. Simultaneous learning may
under-explore one of the modalities, as the stronger
modality may dominate quickly. Thus, learning each
modality separately warrants that the variability of the
input data is fully represented in each of the feature
vectors.

Therefore, from each modality network described
above, we separately obtain an internal data represen-
tation for every item after training them on the genre
classification task. Concretely, the activations of the
last hidden layer of each network become the feature
vector for its respective modality. Given a set of fea-
ture vectors, /2-norm is applied on each of them for
normalization. They are then concatenated into a sin-
gle feature vector, which becomes the input to a simple
feedforward network, where the input layer is directly
connected to the output layer. For single-label classi-
fication, softmax activation is finally applied, resulting
in a multinomial logistic regression model. For multi-
label classification, sigmoid activation is used instead.

5. Multi-label classification

In multi-label classification, multiple target labels may
be assigned to each classifiable instance. Formally:
given a set of n labels G = {¢1, g2, ...,9.}, and a set of
ditems I = {iy,is,...,iq}, we aim to model a function
f able to associate a set of ¢ labels to every item in I,
where ¢ € [1,n] varies for every item.

Deep learning approaches are well-suited for this
problem, as these architectures allow to have multi-
ple outputs in their final layer. The usual architecture
for large multi-label classification using deep learning
ends with a logistic regression layer with sigmoid ac-
tivations evaluated with the cross-entropy loss, where

3When training the multimodal system with the loss L, we tried
ten different values of m: [0.1,0.2,...,0.8,0.9].
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target labels are encoded as high-dimensional sparse
binary vectors (Szegedy et al., 2016). This method,
which we refer as LOGISTIC, implies the assumption
that the classes are statistically independent (which is
not the case in music genres).

A more recent approach (Chollet, 2016), relies on
matrix factorization to reduce the dimensionality of
the target labels, yielding a space where learning can
be made more effectively. This method makes use of
the interrelation between labels, embedding the high-
dimensional sparse labels onto lower-dimensional vec-
tors. In this case, the target of the network is a dense
lower-dimensional vector, which can be learned using
the cosine proximity loss, as these vectors tend to be [2-
normalized. We denote this technique as COSINE, and
we provide a more formal definition next.

5.1 Labels factorization

Let M be the binary matrix of items I and labels G
where m;; = 1 if ¢; is annotated with label g; and
m;; = 0 otherwise. Using M, we calculate the matrix
X of Positive Pointwise Mutual Information (PPMI) for
the set of labels G. Given G; as the set of items an-
notated with label g;, the PPMI between two labels is
defined as:

B P(G;,Gy)
X(9i,9;) = max (0’ log P(Gi)P(Gj)> @

where P(Gi, G;) = |G; NG, |/|I|, P(Gy) = |Gil/I1],
and |.| denotes the cardinality function.

The PPMI matrix X is then factorized using Singu-
lar Value Decomposition (SVD) such that X ~ UXV,
where U and V are unitary matrices, and ¥ is a diag-
onal matrix of singular values. Let 3, be the diagonal
matrix formed from the top d singular values, and let
U, be the matrix produced by selecting the correspond-
ing columns from U, the matrix Cy = Uy-1/%4 contains
the label factors of d dimensions. Finally, we obtain the
matrix of item factors F; as F; = Cy - MT. Further in-
formation on this technique may be found in Levy and
Goldberg (2014).

Factors present in matrices Cy and Fy are embed-
ded in the same space. Thus, a distance metric such
as cosine distance can be used to obtain distance mea-
sures between items and labels. Both labels and items
with similar sets of labels are near each other in this
space. These properties can be exploited in the label
prediction problem.

6. Single-label classification experiment

In this section we describe the dataset and the exper-
imental framework for single-label genre classification
from audio and images (text modality will only be used
in a second set of experiments in Section 7). More
specifically, we set up an experiment for track genre
classification using the different data modalities: only
audio, only album cover artwork, and both. Lastly, we

report and discuss the results of each experiment, com-
pare them with human performance on the task, and
perform a qualitative analysis of the results.

Genre Train Val Test %

Blues 518 120 190 2.68
Country 1351 243 194 5.78
Electronic 3434 725 733 15.81
Folk 858 164 136 3.74
Jazz 1844 373 462 8.66
Latin 390 83 83 1.80
Metal 1749 512 375 8.52
New Age 158 71 38 0.86
Pop 2333 644 466 11.13
Punk 487 132 96 2.31
Rap 1932 380 381 8.71
Reggae 1249 190 266 5.51
RnB 1223 222 396 5.95
Rock 3694 709 829 16.91
World 331 123 46 1.62

Table 1: Number of instances for each genre on the
train, validation and test subsets. The percentage
of elements for each genre is also shown.

6.1 MSD-I dataset

The Million Song Dataset (MSD, McFee et al., 2012) is
a collection of metadata and precomputed audio fea-
tures for 1 million songs. Along with this dataset, a
dataset with annotations of 15 top-level genres with a
single label per song was released (Schreiber, 2015).
In our work, we combine the CD2c version of this
genre dataset # with a collection of album cover images
gathered from 7digital.com using the information
present in the MSD/Echo Nest mapping archive.”> The
final dataset contains 30,713 tracks from the MSD and
their related album cover images, each annotated with
a unique genre label among 15 classes. Based on an
initial analysis on the images, we identified that this
set of tracks is associated to 16,753 albums, yielding
an average of 1.8 songs per album. We also gathered
audio previews of all tracks from 7digital.com. To
facilitate the reproducibility of this work, all metadata,
splits, feature embeddings, and links to related content
are released as a new dataset called the MSD-I°.

We randomly divide the dataset into three parts:
70% for training, 15% for validation, and 15% for test,
with no artist and album overlap across these sets. This
is crucial to avoid possible overfitting (Flexer, 2007),
as the classifier may learn to predict the artist instead
of the genre. In Table 1 we report the number of in-
stances of each genre in the three subsets, and also the
percentage of genre distribution on the entire dataset.

4http://www.tagtraum.com/msd_genre_datasets.
html

Shttp://labs.acousticbrainz.org/
million-song-dataset—-echonest—-archive

®https://www.upf.edu/web/mtg/msdi
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Rock (16.9%), Electronic (15.8%), and Pop (11.1%)
are the most frequent, while Latin (1.8%), New Age
(0.86%), and World (1.62%) the least represented.

6.2 Training procedure
To extract the audio features, we first train the CNN de-
scribed in Section 3.1 on the genre classification task.
We employ three convolutional layers, with the follow-
ing number of filters, from first to last: 64, 128, and
256. Similar to van den Oord et al. (2013) the con-
volutions are only applied to the time axis, using a 4
frames width filter in each layer. Max pooling of 4
units across the time axis is applied after each of the
first two convolutional layers, and max pooling of 2 af-
ter the third. Dropout of 0.5 is applied to all layers,
as applied in Choi et al. (2016a). The flattened out-
put of the last layer has 2048 units and the final fully
connected layer has 15 units (to match the number of
classes aiming to be predicted) with softmax activa-
tion. Categorical crossentropy is used as the loss func-
tion. Mini batches of 32 items are randomly sampled
from the training data to compute the gradient, and
Adam (Kingma and Ba, 2014) is the optimizer used to
train the models, with the default suggested learning
parameters. The networks are trained with a maxi-
mum of 100 epochs with early stopping. Once trained,
we extract the 2048-dimensional vectors from the pre-
vious to last fully connected layer (CNN_AuUDIO) for
the training, validation, and test sets (see Figure 1).
The visual features are similarly extracted from
the ResNet described in Section 3.2. The network
is trained on the genre classification task with mini

batches of 50 samples, for 90 epochs, a learning rate
of 0.0001, and with Adam as optimizer. Once the net-
work converges, we obtain the 2048-dimensional fea-
tures (CNN_VisuAaL) from the input to the last fully
connected layer of the ResNet (see Figure 1).

Finally, we extract the multimodal features from the
network described in Section 3.4. We first train the
multimodal feature space, and later extract the fea-
ture vectors from the last fully connected layers (i.e.,
MM_VisUuAL and MM_AUDIO), as shown in Figure 2.
To obtain MM_AUDIO, at test time, no visual features
are needed, only audio features (CNN_AUDIO). The
same method is applied to the visual features, where
only visual features (CNN_VISUAL) are used to obtain
the MM _VISUAL features of the test set.

In all described networks, feature vectors of items
from train, validation, and test sets are obtained. These
feature vectors are fed to the multinomial fusion net-
work described in Section 4, and classification results
are obtained. This latter training is done with a max-
imum of 100 epochs with early stopping, and dropout
applied after the input layer with a factor of 50%.

6.3 Results and Discussion

Table 2 shows the Precision (P), Recall (R), and F1-
Scores (F1) for the (Audio), (Visual) and (A + V)
approaches. Results shown are the macro average of
the values obtained for every class’. Every experi-
ment was run 3 times and mean and standard devi-

7Note that the reported Fl1-score is the average of the F1-score of
every class, it is not calculated as the harmonic mean of the macro
precision and recall values.
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Input Model P R F1
CNN_AUDIO 0.385 + 0.006 0.341 £+ 0.001 0.336 + 0.002
Audio MM_AUDIO 0.406 + 0.001 0.342 + 0.003 0.334 + 0.003
CNN_AuDIO + MM_AuDpio 0.389 + 0.005 0.350 = 0.002 0.346 + 0.002
CNN_VISUAL 0.291 + 0.016 0.260 4+ 0.006 0.255 + 0.003
Video MM_VISUAL 0.264 4+ 0.005 0.241 £+ 0.002 0.239 + 0.002
CNN_VIsSUAL + MM_VisuAL 0.271 £ 0.001 0.248 4+ 0.003 0.245 £ 0.003
CNN_AuDIO + CNN_VISUuAL 0.485 + 0.005 0.413 +0.005 0.425 + 0.005
A +V MM_AUDIO + MM _VISUAL 0.467 + 0.007 0.393 £ 0.003 0.400 + 0.004
ALL 0.477 £0.010 0.413 + 0.002 0.427 4+ 0.000

Table 2: Genre classification experiments in terms of macro precision, recall, and f-measure. Every experiment

was run 3 times and mean and standard deviation of the results are reported.

Human Annotator Neural Model

Genre Audio Visual A+ V | Audio Visual A+ V
Blues 0 0.50 0.67 0.05 0.36 0.42
Country 0.40 0.60 0.31 0.37 0.21 0.40
Electronic | 0.62 0.44 0.67 0.64 0.44 0.68
Folk 0 0.33 0 0.13 0.23 0.28
Jazz 0.62 0.38 0.67 0.47 0.27 0.49
Latin 0.33 0.33 0.40 0.17 0.08 0.13
Metal 0.80 0.43 0.71 0.69 0.49 0.73
New Age 0 0 0 0.12 0.10
Pop 0.43 0.46 0.42 0.39 0.43 0.49
Punk 0.44 0.29 0.46 0.04 0 0.30
Rap 0.74 0.29 0.88 0.73 0.39 0.73
Reggae 0.67 0 0.80 0.51 0.34 0.55
RnB 0.55 0 0.46 0.45 0.31 0.51
Rock 0.58 0.40 0.40 0.54 0.20 0.58
World 0 0.33 0 0 0.03
Average 0.41 0.32 0.46 0.35 0.25 0.43

Table 3: Detailed results of the genre classification task. Human annotated results on the left, and our best
models on the right (CNN_AuDIO + MM_AUDIO, CNN_VISUAL, and ALL respectively).

ation of the results are reported in Table 2. The results
show that the combination of audio and visual features
greatly outperforms audio and visual modalities in iso-
lation. Audio seems to be a better source of features
for genre classification, as it obtains a higher perfor-
mance over visual features. Furthermore, we observe
that the addition of the features learned from the mul-
timodal feature space MM_AUDIO yields better perfor-
mance in the case of audio. This implies that audio fea-
tures get benefited by the multimodal space, resulting
in an improvement of the quality of pure audio predic-
tion when images are only used in the training of the
multimodal feature space, and not in the prediction.

Finally, the aggregation of all feature vectors yields
the highest results. It seems that every feature vector
is helping to boost the performance of specific classes.
Therefore, the neural network allows the aggregated
features to improve the results.

We further explore the results by splitting them
into the different genre classes to understand where
our models perform better. In Table 3 the F1-Scores

for these results are reported. The “Neural model”
column displays the per class results of the best ap-
proach for each modality. The performance of the au-
dio and visual features is correlated (Pearson correla-
tion of 0.80), and audio features generally outperform
visual features. However, visual features perform bet-
ter than audio in Pop, even though this is a well pop-
ulated class. Moreover, visual features clearly outper-
form audio in Blues and Folk. The aggregation of all
features is able to combine the ability of each feature
vector and obtain the best results in all classes. New
Age and World obtain very low performance in all set-
tings, being also the least represented classes in the
dataset.

6.4 Human evaluation
We compare our neural network results with a human
expert performing the same genre classification task.®

8The human annotator is an external music expert. Although hav-
ing these genres annotated by several experts would diminish poten-
tial problems that subjectivity may arise, a single expert annotator is
a fairly good indicative of human performance.
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Figure 3: Confusion matrices of the three settings from the classification with the Neural Network models
(CNN_Audio + MM_Audio, CNN_Visual and ALL) and the human annotator.

The subject annotated 300 songs of different albums
and artists from the test set with their corresponding
genre from the given list of 15 genres®. Genres of the
songs were balanced following the same distribution

9 All procedures performed in this study involving human subjects
were conducted in accordance with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards. Informed
consent was obtained from the participant.

of the test set. The content presented to the annotator
was divided into 100 songs with audio tracks, 100 with
cover images, and 100 with audio tracks and their cor-
responding cover images. The annotator can only see
the album cover in the visual experiment, listen to the
audio in the audio experiment, and both things in the
multimodal experiment. Neither titles nor artist names
were displayed.
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Looking at Table 3 we see how the human outper-
forms the best neural models in the three experiments.
However, the distances among scores between the an-
notator and the model are small, especially in the mul-
timodal experiment. This implies that deep learning
models are not too far away from human performance
when classifying music by genre. Furthermore, we ob-
serve a strong correlation between the annotator and
our model in the audio experiment (Pearson correla-
tion 0.87), whereas there is no correlation in the visual
experiment (0.24). This observation suggests that our
audio model may be using similar features than those
employed by humans, while our visual model is learn-
ing differently. Although intuitively the human perfor-
mance should not depend on the number of instances
per class in the training set, we observe that classes
where the human and the model fail are those with a
lower number of instances. This may suggest that some
of these classes are difficult for audio-based classifica-
tion regardless of the number of instances.

6.5 Qualitative analysis

6.5.1 Error analysis

To better understand the role of each modality in the
classification, we analyzed the confusion matrices (see
Figure 3) of the neural model approaches and the hu-
man annotator present in Table 3. We observe again
that audio features perform poorly on less populated
classes (e.g., Blues, Latin, New Age, Punk and World),
whereas visual features are able to achieve better re-
sults on Blues and New Age. This might be one of
the reasons the two modalities complement each other
well.

We observe that World music albums are highly
misclassified in all the approaches. Apart from the re-
duced number of instances this class has, World is a too
broad genre that may encompass very different types of
music, making the classification harder or almost im-
possible from a human perspective. In addition, many
albums are incorrectly classified as Rock, which is more
evident in the visual approach, something that does not
happen to the human annotator. The same problem
appears when dealing with audio features, but the ef-
fect appears diminished. Rock is one of the most pop-
ulated classes in our dataset, implying a high degree
of musical variation. In all modalities, there are also
an important number of albums incorrectly classified
as Electronic, Jazz or Pop.

Moreover, it is worth noting that New Age albums
are sometimes incorrectly classified as Heavy Metal. In
Figures 4a and 4b we observe how the classifier may
be identifying horns as a visual characteristic of Metal
albums. In some instances, there are clear visual sim-
ilarities on the cover images of these genres that, by
contrast, do not exist in the audio signal.

In general, audio features seem to be more fine
grained for the classification, but we need more in-
stances in all classes to properly feed the classifier. We

fied as Heavy Metal

Figure 4: Heavy Metal and New Age album covers

observe that the Audio + Visual approach produces
fewer errors in general, with Rock being the most mis-
classified class.

6.5.2 Visual heatmaps
Recently Zhou et al. (2016) proposed an approach use-
ful to visualize the areas of an image where a CNN fo-
cuses its attention to drive the label-prediction process.
By performing global average pooling on the convolu-
tional feature maps obtained after the chain of layers
of a CNN, they are able to build a heatmap, referred to
as Class Activation Mapping: this heatmap highlights
the portions of the input image that have mostly influ-
enced the image classification process. The approach
consists in providing a heatmap for each class, which is
very useful for recognition of objects in images. Since
Resnet includes a GAP layer we just forward images of
the test set and extract the weights of the GAP layer.
Using this technique we tried to properly study
the misclassification problems observed in the previ-
ous section. We observed that the attention of the net-
work is often focused on faces for Rap, Blues, Reggae,
R&B, Latin, and World genres. For Jazz, the network
seems to focus more on instruments, typographies, and
clothes; for Rock and Electronic on backgrounds; for
Country on faces, hats, and jeans; and for Folk on ty-
pographies. We observed that the network is also fo-
cusing on aging aspects of faces, associating for in-
stance old black men with Blues. We also observed that
the network tends to identify covers with nude parts of
the body as Pop. In Figure 5 we present some examples
of these observations. We provide all the images of the
test set mapped with the attention heat-map '° to bet-

Ohttps://fvancesco.github.io/saliency/saliency.
html
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Figure 5: Examples of heatmaps for different genre
classes. The genres on the left column are the
ground truth ones.

ter explore where the network focuses during the pre-
dictions. Finally, thanks to this technique we corrobo-
rated the assumption presented in the previous subsec-
tion about the relation between cover arts with horns
and Metal genre, as shown in Figure 6.

Figure 6: Heatmap for Metal genre class of a Metal
(top) and a New Age (bottom) album with horns.

7. Multi-label classification experiment

In this section we describe the dataset and the exper-
imental framework for multi-label genre classification
from audio, text, and images. More specifically, and
since each modality used (i.e., cover image, text re-
views, and audio tracks) is associated with a music al-
bum, our task focuses this time on album classification,
instead of track classification. Lastly, we report and
discuss the results of each experiment and present a
qualitative analysis of the results.

7.1 MuMu dataset

To the best of our knowledge, there are no publicly
available large-scale datasets that encompass audio,
images, text, and multi-label genre annotations. There-
fore, we present MuMu, a new Multimodal Music

dataset with multi-label genre annotations that com-
bines information from the Amazon Reviews dataset
(McAuley et al., 2015) and the MSD. The former con-
tains millions of album customer reviews and album
metadata gathered from Amazon.com.

To map the information from both datasets we use
MusicBrainz!!, an open encyclopedia of music meta-
data. For every album in the Amazon dataset, we
query MusicBrainz with the album title and artist name
to find the best possible match. Matching is per-
formed using the same methodology described in Ora-
mas et al. (2015), following a pair-wise entity resolu-
tion approach based on string similarity. Following this
approach, we were able to map 60% of the Amazon
dataset. For all the matched albums, we obtain the Mu-
sicBrainz recording ids of their songs. With these, we
use an available mapping from MSD to MusicBrainz'?
to obtain the subset of recordings present in the MSD.
From the mapped recordings, we only keep those as-
sociated with a unique album. This process yields the
final set of 147,295 songs, which belong to 31,471 al-
bums. We also use in these experiments audio previews
retrieved from 7digital.com (see Section 6.1). For
the mapped set of albums, there are 447,583 customer
reviews in the Amazon Dataset. In addition, the Ama-
zon Dataset provides further information about each
album, such as genre annotations, average rating, sell-
ing rank, similar products, cover image URL, etc. We
employ the provided image URL to gather the cover art
of all selected albums. The mapping between the three
datasets (Amazon, MusicBrainz, and MSD), genre an-
notations, data splits, text reviews, and links to images
are released as the MuMu dataset!3.

7.1.1 Genre labels

Amazon has its own hierarchical taxonomy of music
genres, which is up to four levels in depth. In the first
level there are 27 genres, and almost 500 genres over-
all. In our dataset, we keep the 250 genres that sat-
isfy the condition of having been annotated in at least
12 albums. Every album in Amazon is annotated with
one or more genres from different levels of the tax-
onomy. The Amazon Dataset contains complete infor-
mation about the specific branch from the taxonomy
used to classify each album. For instance, an album
annotated as Traditional Pop comes with the complete
branch information Pop / Oldies / Traditional Pop. To
exploit both the taxonomic and the co-occurrence in-
formation, we provide every item with the labels of all
their branches. For example, an album classified as
Jazz / Vocal Jazz and Pop / Vocal Pop is annotated in
MuMu with the four labels: Jazz, Vocal Jazz, Pop, and
Vocal Pop. There are in average 5.97 labels for each
song (3.13 standard deviation).

Uhttp://musicbrainz.org

2http://labs.acousticbrainz.org/
million-song-dataset-echonest-archive

Bhttps://www.upf.edu/web/mtg/mumu
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Genre % of albums ‘ Genre % of albums
Pop 84.38 | Tributes 0.10
Rock 55.29 | Harmonica Blues 0.10
Alternative Rock 27.69 | Concertos 0.10
World Music 19.31 | Bass 0.06
Jazz 14.73 European Jazz 0.06
Dance & Electronic 12.23 Piano Blues 0.06
Metal 11.50 | Norway 0.06
Indie & Lo-Fi 10.45 | Slide Guitar 0.06
R&B 10.10 East Coast Blues 0.06
Folk 9.69 | Girl Groups 0.06

Table 4: Top-10 most and least represented genres.

The labels in the dataset are highly unbalanced, fol-
lowing a distribution that might align well with those
found in real world scenarios. In Table 4 we see the
top 10 most and least represented genres and the per-
centage of albums annotated with each label. The un-
balanced nature of the genre annotations poses an in-
teresting challenge for music classification that we also
aim to exploit.

7.2 Evaluation metrics
The evaluation of multi-label classification is not nec-
essarily straightforward. Evaluation measures vary ac-
cording to the output of the system. In this work, we
are interested in measures that deal with probabilis-
tic outputs, instead of binary. The Receiver Operating
Characteristic (ROC) curve is a graphical plot that il-
lustrates the performance of a binary classifier system
as its discrimination threshold is varied, by plotting the
true positive rate (TPR) against the false positive rate
(FPR). Thus, the area under the ROC curve (AUC) is
often taken as an evaluation measure to compare such
systems. We selected this metric to compare the per-
formance of the different approaches as it has been
widely used for genre and tag classification problems
(Choi et al., 2016a; Dieleman and Schrauwen, 2014).
The output of a multi-label classifier is a label-item
matrix. This matrix contains the probabilities of each
class for every item when using the LOGISTIC config-
uration, and the cosine similarity between items and
labels latent factors for the COSINE configuration. This
matrix can be evaluated either from the labels or the
items perspective. We can measure how accurate the
classification is for every label, or how well the labels
are ranked for every item. In this work, the former is
evaluated with the AUC measure, which is computed
for every label and then averaged. We are interested
in classification models that strengthen the diversity of
label assignments. As the taxonomy is composed of
broad genres that are over-represented in the dataset
(see Table 4) and more specific subgenres (e.g., Vocal
Jazz, Britpop), we want to measure whether the clas-
sifier is focusing only on over-represented genres, or
on more fine-grained ones. We assume that an ideal
classifier would exploit better the taxonomic depth. To
measure this, we use aggregated diversity (Adomavi-
cius and Kwon, 2012), also known as catalog cover-

CNN layer  Filter = Max pooling

1 3x3 (4,2)
2 3x3 (4,2)
3 3x3 4,1
4 1x1 (4,5)
1 4x96 4,1
2 4x1 4,1)
3 4x1 4,1)
4 1x1 -
1 4x70 4,4
2 4x6 4,1
3 4x1 4,1)
4 1x1 -

Table 5: Filter and max pooling sizes applied to the
different layers of the three audio CNN approaches
used for multi-label classification.

age. ADiv@N measures the percentage of normalized
unique labels present in the top K predictions across
all test items. Values of k = 1,3,5 are typically em-
ployed in multi-label classification (Jain et al., 2016)

7.3 Training procedure

The dataset is divided as follows: 80% for training,
10% for validation, and 10% for test. Following the
same artist filter used in Section 6.1, all sets contain
albums from different artists to avoid overfitting. The
matrix of album genre annotations of the training and
validation sets is factorized using the approach de-
scribed in Section 5.1, with a value of d = 50 dimen-
sions.

7.3.1 Audio

A music album is composed by a series of audio tracks,
each of which may be associated with different genres.
In order to learn the album genre from a set of audio
tracks we split the problem into three steps: (1) track
feature vectors are learned while trying to predict the
genre labels of the album from every track in a deep
neural network. (2) Track vectors of each album are
averaged to obtain album feature vectors. (3) Album
genres are predicted from the album feature vectors in
a shallow network where the input layer is directly con-
nected to the output layer, as in the network described
in Section 4.

To learn the track genre labels we design a CNN as
the one described in Section 3.1, with four convolu-
tional layers. We experiment with different number of
filters, filter sizes, and output configurations. For the
filter size we compare three approaches: square 3x3
filters as in Choi et al. (2016a), a filter of 4x96 that
convolves only in time (van den Oord et al., 2013),
and a musically motivated filter of 4x70, which is able
to slightly convolve in the frequency axis (Pons et al.,
2016). To study the width of the convolutional lay-
ers we try two different settings: HIGH with 256, 512,
1024, and 1024 filters in each layer respectively, and
LOW with 64, 128, 128, 64 filters. Max pooling is ap-
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plied after each convolutional layer (see Table 5 for
further details about convolutional filter sizes and max
pooling layers). Finally, we use the two different net-
work targets defined in Section 5, LOGISTIC and CO-
SINE. We empirically observed that dropout regulariza-
tion only helps in the HIGH plus COSINE configurations.
Therefore we applied dropout with a factor of 0.5 to
these configurations, and no dropout to the others.

Apart from these configurations, a baseline ap-
proach is added. This approach consists in a traditional
audio-based approach for genre classification based
on the audio descriptors present in the MSD (Bertin-
Mabhieux et al., 2011). More specifically, for each song
we aggregate four different statistics of the 12 tim-
bre coefficient matrices: mean, max, variance, and [2-
norm. The obtained 48 dimensional feature vectors are
fed into a feed forward network as the one described
in Section 4 with LOGISTIC output. This approach is
denoted as TIMBRE-MLP.

All these networks are trained with a maximum of
100 epochs and early stopping, using mini batches of
32 items, randomly sampled from the training data to
compute the gradient, and Adam is the optimizer used
to train the models, with the default suggested learning
parameters unless otherwise specified.

7.3.2 Text

In the presented dataset, each album has a variable
number of customer reviews. We use an approach
similar to the one described in Oramas et al. (2016a)
for genre classification from text, where all reviews
from the same album are aggregated into a single text.
The aggregated result is truncated at approximately
1500 characters (incomplete sentences are removed
from the end of the truncated text), thus balancing the
amount of text per album, as more popular artists tend
to have a higher number of reviews. As reviews are
chronologically ordered in the dataset, older reviews
are favored in this process. After truncation, we apply
the semantic enrichment and Vector Space Model ap-
proaches described in Section 3.3. The vocabulary size
of the VSM is limited to 10k as it yields a good balance
of network complexity and accuracy.

For text classification, we obtain two feature vec-
tors as described in Section 3.3: one built from the
texts (VSM), and another built from the semantically
enriched texts (VSM+ SEM). Both feature vectors are
trained in the multi-label genre classification task us-
ing the two output configurations LOGISTIC and CO-
SINE. This network is also trained with mini batches of
32 items, and Adam as optimizer.

7.3.3 Images

Every album in the dataset has an associated cover
art image. To perform music genre classification
from these images, we use Deep Residual Networks
(ResNets) described in Section 3.2 with LOGISTIC out-
put. The network is trained on the genre classification

task with mini batches of 50 samples for 90 epochs, a
learning rate of 0.0001, and with Adam as optimizer.

7.4 Results and Discussion
We first evaluate every modality in isolation in the
multi-label genre classification task. Then, from each
modality, a deep feature vector is obtained for the best
performing approach in terms of AUC (A, V, and I).
Finally, the three modality vectors are combined in a
multimodal network as the one described in Section 4.
All results are reported in Table 6 and are discussed
next. Performance of the classification is reported in
terms of AUC score and ADiv@N with N = 1,3,5. The
training speed per epoch and number of network hy-
perparameters are also reported.

The results on audio classification show that CNNs
applied over audio spectrograms clearly outperform
our baseline approach based on handcrafted features.
We observe that the TIMBRE-MLP approach achieves
0.792 of AUC, contrasting with the 0.888 from the best
CNN approach. We note that the LOGISTIC configura-
tion obtains better results when using a lower num-
ber of filters per convolution (Low). Configurations
with fewer filters have less parameters to optimize, and
their training processes are faster. On the other hand,
in COSINE configurations we observe that the use of a
higher number of filters tends to achieve better perfor-
mance. It seems that the regression of the factors ben-
efits from wider convolutions. Moreover, we observe
that 3x3 square filter settings have lower performance,
need more time to train, and have a higher number
of parameters to optimize. By contrast, networks using
time convolutions only (4x96) have a lower number of
parameters, are faster to train, and achieve comparable
performance. Furthermore, networks that slightly con-
volve across the frequency bins (4x70) achieve better
results with only a slightly higher number of parame-
ters and training time. Finally, we observe that the co-
SINE regression approach achieves better AUC scores in
most configurations, and also their results are better in
terms of aggregated diversity.

Results on text classification show that the semantic
enrichment of texts clearly yields better results in terms
of AUC and diversity. Furthermore, we observe that the
COSINE configuration slightly outperforms LOGISTIC in
terms of AUC, and greatly in terms of aggregated diver-
sity. The text-based results are overall slightly superior
to the audio-based ones.

Results show that genre classification from images
underperforms in terms of AUC and aggregated diver-
sity compared to the other modalities. Due to the use
of an already pre-trained network with a LOGISTIC out-
put (ImageNet, Russakovsky et al., 2015) as initializa-
tion of the network, it is not straightforward to apply
the COSINE configuration. Therefore, we only report
results for the LOGISTIC configuration.

From the best performing
terms of AUC of each modality (e,

approaches in
AuU-
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Modality Target Settings Params Time AUC ADiv@l ADiv@3 ADiv@5
AupIO LOGISTIC ~ TIMBRE-MLP 0.01M 1s 0.792 0.04 0.14 0.22
Aupio LOGISTIC LOW-3X3 0.5M 390s 0.859 0.14 0.34 0.54
AupIio LOGISTIC HIGH-3X3 16.5M 2280s 0.840 0.20 0.43 0.69
AupIO LOGISTIC LOW-4x96 0.2M 140s 0.851 0.14 0.32 0.48
Aupio LOGISTIC HIGH-4X96 5M 260s 0.862 0.12 0.33 0.48
Aupio LOGISTIC LOW-4X70 0.35M 200s 0.871 0.05 0.16 0.34
Aupio LOGISTIC HIGH-4X70 7.5M 600s 0.849 0.08 0.23 0.38
AupIio COSINE LOW-3Xx3 0.33M 400s 0.864 0.26 0.47 0.65
AupIO COSINE HIGH-3X3 15.5M 2200s  0.881 0.30 0.54 0.69
Aupio COSINE LOW-4x96 0.15M 135s 0.860 0.19 0.40 0.52
Aupio COSINE HIGH-4X96 4M 250s 0.884 0.35 0.59 0.75
AupIO COSINE LOW-4Xx70 0.3M 190s 0.868 0.26 0.51 0.68
Aupio (A) COSINE HIGH-4X70 6.5M 590s 0.888 0.35 0.60 0.74
TEXT LOGISTIC VSM 25M 11s 0.905 0.08 0.20 0.37
TEXT LOGISTIC VSM+SEM 25M 11s 0.916 0.10 0.25 0.44
TEXT COSINE VSM 25M 11s 0.901 0.53 0.44 0.90
TEXT (T) COSINE VSM+ SEM 25M 11s 0.917 0.42 0.70 0.85
IMAGE (1) LOGISTIC RESNET 1.7M 4009s 0.743 0.06 0.15 0.27
A+ T LOGISTIC MLP 1.5M 2s 0.923 0.10 0.40 0.64
A+1 LOGISTIC MLP 1.5M 2s 0.900 0.10 0.38 0.66
T+1 LOGISTIC MLP 1.5M 2s 0.921 0.10 0.37 0.63
A+T+1 LOGISTIC MLP 2M 2s 0.936 0.11 0.39 0.66
A+T COSINE MLP 0.3M 2s 0.930 0.43 0.74 0.86
A+1 COSINE MLP 0.3M 2s 0.896 0.32 0.57 0.76
T+1 COSINE MLP 0.3M 2s 0.919 0.43 0.74 0.85
A+T+I1 COSINE MLP 0.4M 2s 0.931 0.42 0.72 0.86

Table 6: Results for Multi-label Music Genre Classification of Albums. Number of network hyperparameters,
epoch training time, AUC-ROC, and aggregated diversity at N = 1, 3,5 for different settings and modalities.

DIO/COSINE/HIGH-4Xx70, TEXT/COSINE/VSM + SEM
and IMAGE/LOGISTIC/RESNET), an internal feature
representation is obtained as described in Section 3.
Then, these three feature vectors are aggregated in all
possible combinations, and genre labels are predicted
using the feedforward network described in Section 4.
Both output configurations LOGISTIC and COSINE are
used in the learning phase, and dropout of 0.7 is
applied in the COSINE configuration (we empirically
determined that this dropout factor yields better
results).

Results suggest that the combination of modalities
outperforms single modality approaches. As image fea-
tures are learned using a LOGISTIC configuration, they
seem to improve multimodal approaches with LOGIS-
TIC configuration only. Multimodal approaches that in-
clude text features tend to achieve better results. Nev-
ertheless, the best approaches are those that exploit the
three modalities of MuMu. COSINE approaches have
similar AUC than LOGISTIC approaches but a much bet-
ter aggregated diversity, thanks to the spatial proper-
ties of the factorized space.

7.5 Qualitative Analysis

From the set of album factors obtained from the fac-
torization of the training set (see Section 5.1), those
annotated with a single label from the top level of the
taxonomy are plotted in Figure 7 using t-SNE dimen-
sionality reduction (Maaten and Hinton, 2008). It can
be seen how the different albums are properly clus-
tered in the factorized space according to their genre.

In addition, we studied the list of Top-3 genres pre-
dicted for every album in the test set for the best LO-

eee Dance & Electronic
eee Rock
Alternative Rock
Jazz
e®e R&B
eoe Metal
Pop
40 eee Rap & Hip-Hop
oo Latin Music
eee Country

-20

-40 -20 o 20 40

Figure 7: t-SNE of album factors.

GISTIC and COSINE audio-based approaches in terms of
AUC (LOGISTIC/LOW-4X70 AND COSINE/HIGH-4x70).
In Table 7 we see these predictions for the first 20 al-
bums in the test set. We clearly observe in these results
the higher diversity of the predictions of the COSINE
approach. A listening test on tracks of the predicted
albums suggests that the predictions of the COSINE ap-
proach are more fine-grained that those provided by
the LOGISTIC approach, as we observed that COSINE re-
sults accurately include labels from deeper levels of the
taxonomy.

We also studied the information gain of words in
the different genres from the best text-based classifica-
tion approach. We observed that genre labels present
inside the texts have high information gain values. It



14 S. Oramas et al: Multimodal Deep Learning for Music Genre Classification

Amazon ID | LocisTic | CosiNE

BOO002SWJF Pop,Dance & Electronic,Rock Dance & Electronic,Dance Pop,Electronica
BO0O006FX4G Pop,Rock,Alternative Rock Rock,Alternative Rock,Pop

BOO0OOOOPLF Pop,Jazz,Rock Jazz,Bebop,Modern Postbebop
B0O0005YQOV | Pop,Jazz,Bebop Jazz,Cool Jazz,Bebop

B0000026BS Jazz,Pop,Bebop Jazz,Bebop,Cool Jazz

B0O000006PK Pop,Jazz,Bebop Jazz,Bebop,Cool Jazz

BO000506NI Pop,Rock,World Music Blues, Traditional Blues,Acoustic Blues
BOOOBPYKLY Pop,Jazz,R&B Smooth Jazz,Soul-Jazz & Boogaloo,Jazz
B000007U2R Pop,Dance & Electronic,Dance Pop Dance Pop,Dance & Electronic,Electronica
B0O02LSPVJO Rock,Pop,Alternative Rock Rock,Alternative Rock,Metal
BO0O0007WES Pop,Rock,Country Rock,Pop,Singer-Songwriters
BOO1IUC4AA Dance & Electronic,Pop,Dance Pop Dance & Electronic,Dance Pop,Electronica
BOOOSFJW20 Pop,Rock,World Music Pop,Rock,World Music

BOO0002NES Pop,Rock,Dance & Electronic Dance & Electronic,Dance Pop,Electronica
B000002GUJ Rock,Pop,Alternative Rock Alternative Rock,Indie & Lo-Fi,Indie Rock
B00004TOQB Pop,Rock,Alternative Rock Rock,Alternative Rock,Pop

B0000520XS Pop,Rock,Folk Singer-Songwriters,Contemporary Folk,Folk
BOOOEQ47W2 | Pop,Rock,Alternative Rock Metal,Pop Metal,Rock

B0O0000258F Pop,Rock,Jazz Smooth Jazz,Soul-Jazz & Boogaloo,Jazz
B000003748 Pop,Rock,Alternative Rock Alternative Rock,Rock,American Alternative

Table 7: Top-3 genre predictions in albums from the test set for LOGISTIC and COSINE audio-based approaches.

B Rock

Dance & Electronic

B azz
. Country

B rsB

Figure 8: t-SNE visualization of randomly selected im-
age vectors from five of the most frequent genres.

is also remarkable that band is a very informative word
for Rock, song for Pop, and dope, rhymes, and beats
are discriminative features for Rap albums. Location
names have also important weights, as Jamaica for
Reggae, Nashville for Country, or Chicago for Blues'#.
In Figure 8 a set of cover images of five of the most
frequent genres in the dataset is shown using t-SNE
over the obtained image feature vectors. We observe
how album feature vectors of the same genre cluster
well in the space. In the left top corner the ResNet rec-
ognizes women faces on the foreground, which seems
to be common in Country albums (red). Also the R&B
genre appears to be generally well clustered, since
black men that the network sucessfully recognizes tend
to appear on the cover. The jazz albums (green) on

14The complete list of words is available on-line at https://
www.upf.edu/en/web/mtg/mumu

the right are all clustered together, perhaps thanks to
the uniform type of clothing worn by the people of
their covers, or the black and white images. Therefore,
similarly to the qualitative analysis presented in Sec-
tion 6.5, we observed that the visual style of the cover
seems to be informative when recognizing the album
genre.

8. Conclusions

In this work we have proposed a representation learn-
ing approach for the classification of music genres from
different data modalities, i.e., audio, text, and images.
The proposed approach has been applied to a tradi-
tional classification scenario with a small number of
mutually exclusive classes. It has also been applied to
a multi-label classification scenario with hundreds of
non mutually exclusive classes. In addition, we have
proposed an approach based on the learning of a mul-
timodal feature space and a dimensionality reduction
of target labels using PPMI.

Results show in both scenarios that the combination
of learned data representations from different modal-
ities yields better results than any of the modalities in
isolation. In addition, a qualitative analysis of the re-
sults have shed some light on the behavior of the dif-
ferent modalities. Moreover, we have compared our
neural model with a human annotator, reveling corre-
lations and showing that our deep learning approach
is not far from human performance.

In our single-label experiment we clearly observed
how visual features perform better in some classes
where audio features fail, thus complementing each
other. In addition, we have shown that the learned
multimodal feature space seems to improve the perfor-
mance of audio features. This space increases accu-
racy, even when the visual part is not present in the
prediction phase. This is a promising result, not only
for genre classification, but also for other applications
such as music recommendation, especially when data



15 S. Oramas et al: Multimodal Deep Learning for Music Genre Classification

from different modalities are not always available for
every item. However, more experimentation is needed
to confirm this finding.

In our multi-label experiment we provide evidence
of how representation learning approaches for audio
classification outperform traditional handcrafted fea-
ture based approaches. Moreover, we compared the
effect of different design parameters of CNNs in au-
dio classification. Text-based approaches seem to out-
perform other modalities, and benefit from the seman-
tic enrichment of texts via entity linking. While the
image-based classification yielded the lowest perfor-
mance, it helped to improve the results when combined
with other modalities. Furthermore, the dimensional-
ity reduction of target labels led to better results, not
only in terms of AUC, but also in terms of aggregated
diversity.

To carry out the experiments, we have collected
and released two novel multimodal datasets for music
genre classification. First, MSD-I, a dataset with over
30k audio tracks and their corresponding album cover
artwork and genre annotation. Second, MuMu, a new
multimodal music dataset with over 31k albums, 147k
audio tracks, and 450k album reviews.

To conclude, this work has deeply explored the clas-
sification problem of music genres from different per-
spectives and using different data modalities, introduc-
ing novel ideas to approach this problem coming from
other domains. In addition, we envision that the pro-
posed multimodal deep learning approach may be eas-
ily applied to other MIR tasks (e.g., music recommen-
dation, audio scene classification, machine listening,
cover song identification). Moreover, the release of the
gathered datasets opens up a number of potentially un-
explored research possibilities.

9. Reproducibility

Both datasets used in the experiments are released as
MSD-I'®> and MuMu'6. The released data includes map-
pings between data sources, genre annotations, splits,
texts, and links to images. Audio and image files are
not released due to copyright issues. The source code
to reproduce the audio, text, and multimodal experi-
ments!” and the visual experiments'® is also available.
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