
IDENTIFYING POLYPHONIC PATTERNS FROM AUDIO RECORDINGS
USING MUSIC SEGMENTATION TECHNIQUES

Oriol Nieto and Morwaread M. Farbood
Music and Audio Research Lab

New York University
{oriol, mfarbood}@nyu.edu

ABSTRACT

This paper presents a method for discovering patterns of
note collections that repeatedly occur in a piece of music.
We assume occurrences of these patterns must appear at
least twice across a musical work and that they may con-
tain slight differences in harmony, timbre, or rhythm. We
describe an algorithm that makes use of techniques from
the music information retrieval task of music segmenta-
tion, which exploits repetitive features in order to auto-
matically identify polyphonic musical patterns from audio
recordings. The novel algorithm is assessed using the re-
cently published JKU Patterns Development Dataset, and
we show how it obtains state-of-the-art results employing
the standard evaluation metrics.

1. INTRODUCTION

The task of discovering repetitive musical patterns (of which
motives, themes, and repeated sections are all examples)
consists of retrieving the most relevant musical ideas that
repeat at least once within a specific piece [1, 8]. Besides
the relevant role this task plays in musicological studies,
especially with regard to intra-opus analysis, it can also
yield a better understanding of how composers write and
how listeners interpret the underlying structure of music.
Computational approaches to this task can dramatically sim-
plify not only the analysis of a specific piece, but of an
entire corpus, potentially offering interesting explorations
and relations of patterns across works. Other potential
applications include the improved navigation across both
large music collections and stand-alone pieces, or the de-
velopment of computer-aided composition tools.

Typically the task of automatically discovering musical
patterns uses symbolic representations of music [3]. Meth-
ods that assume a monophonic representation have been
proposed, and operate on various musical dimensions such
as chromatic/diatonic pitch, rhythm, or contour [4, 9, 10].
Other methods focusing on polyphonic music as input have

c© Oriol Nieto, Morwaread M. Farbood.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Oriol Nieto, Morwaread M. Farbood.
“Identifying Polyphonic Patterns From Audio Recordings Using Music
Segmentation Techniques”, 15th International Society for Music Infor-
mation Retrieval Conference, 2014.

also been presented, mostly using geometric representa-
tions in Euclidean space, with a different axis assigned to
each musical dimension [6, 11]. Similar techniques have
also been explored [7, 11, 12] that attempt to arrive at a
compressed representation of an input, multidimensional
point set. Other methods using cognitively inspired rules
with symbolic representations of music have also been pro-
posed [6, 16]. Working with the score of a musical piece
instead of its audio representation can indeed reduce the
complexity of the problem, however this also significantly
narrows the applicability of the algorithm, since it is not
necessarily common to have access to symbolic represen-
tations of music, particularly when working with genres
such as jazz, rock, or Western popular music.

Methods using audio recordings as input have also been
explored. A good recent example is [3], where the authors
first estimate the fundamental frequency (F0) from the au-
dio in order to obtain the patterns using a symbolic-based
approach. Another one uses a probabilistic approach to
matrix factorization in order to learn the different parts of
a western popular track in an unsupervised manner [20].
Yet another method uses a compression criterion where the
most informative (i.e., repeated) parts of a piece are iden-
tified in order to automatically produce a musical “sum-
mary” [17].

In this paper, we propose a method using audio record-
ings as input in an attempt to broaden the applicability of
pattern discovery algorithms. We make use of tools that
are commonly employed in the music information retrieval
task of music segmentation combined with a novel score-
based greedy algorithm in order to identify the most re-
peated parts of a given audio signal. Finally, we evaluate
the results using the JKU Patterns Development Dataset
and the metrics proposed in the Music Information Re-
trieval Evaluation eXchange (MIREX) [1].

The outline of this paper is as follows: In Section 2 we
review a set of music segmentation techniques that will be
used in our algorithm; in Section 3 we detail our method to
extract musical patterns, including the score-based greedy
algorithm; in Section 4 we present the evaluation and the
results; and in Section 5 we draw various conclusions and
identify areas for future work.

2. MUSIC SEGMENTATION TECHNIQUES

The task of music segmentation is well-established in the
music informatics literature (see [18] for a review). Its goal
is to automatically identify all the non-overlapping musi-
cal segments (or sections) of a given track, such that the
concatenation of all of them reconstructs the entire piece.
Once these segments are identified, they are labeled based
on their similarity (e.g., verse, chorus, coda). Therefore,
this task can be divided into two different subproblems: the
discovery of the boundaries that define all the segments,
and the grouping of the segments into different labels. In
this work we will use tools that focus mainly on the former
subproblem.

There is general agreement among researchers that any
given boundary is defined by at least one of these three
characteristics: repetition, homogeneity, and/or novelty
[18]. In our case, we center the discussion on the repetition
boundaries, since, as we will see in Section 3, repetition is
the defining feature of the musical patterns.

2.1 Extracting Repetitive Boundaries

In this subsection we review a standard technique to ex-
tract boundaries characterized by repetition (also known as
a sequence approach), from an input audio signal x. For a
more detailed explanation, we refer the reader to [13]. The
process can be summarized in three different steps:

i The signal x is transformed into a series of feature vec-
tors C = (c1, ..., cN) that divide x into N frames and
capture specific frame-level characteristics of the given
signal. In our case, we will only focus on harmonic
features, more specifically on chromagrams (or pitch
class profiles).

ii C is used in order to obtain a self-similarity matrix
(SSM) S, a symmetric matrix such that S(n,m) =
d(cn, cm),∀n,m ∈ [1 : N], where d is a distance func-
tion (e.g. Euclidean, cosine, Manhattan).

iii The resulting matrix S will contain diagonal paths (or
semi-diagonal in case of slight tempo variations) or
stripes that will indicate the repetition of a specific part
of the audio signal x. These paths can be extracted us-
ing greedy algorithms (e.g., as described in [13]). The
final boundaries are given by the endpoints of these
paths.

An example of an SSM using the Euclidean distance
with the identified boundaries is shown in Figure 1. As
can be seen, the annotated boundaries are visually asso-
ciated with the paths of the matrix. The identification of
patterns, as opposed to the task of segmentation, allows
overlapping patterns and occurrences, so we base our al-
gorithm on greedy methods to extract paths from an SSM.

2.2 Transposition-Invariant Self-Similarity Matrix

It is common to analyze pieces that contain key-transposed
repetitions. It is therefore important for an algorithm to
be invariant to these these transpositions when identifying

0 500 1000 1500
Time frames

0

500

1000

1500

T
im

e
 f

ra
m

e
s

Figure 1. Self-similarity matrix for Chopin’s Op. 24 No. 4,
with annotated boundaries as vertical and horizontal lines.

repetitions. One effective method for solving this prob-
lem [14] involves a technique that can be described in two
steps: (1) compute 12 different SSMs from harmonic rep-
resentations (e.g. chromagrams), each corresponding to a
transposition of the 12 pitches of the Western chromatic
scale, and 2) obtain the transposition-invariant SSM by
keeping the minimum distance across the 12 matrices for
all the N ×N distances in the output matrix. Formally:

S(n,m) = mink∈[0:11]{Sk(n,m)},∀n,m ∈ [1 : N] (1)

where S is the transposition-invariant SSM, and Sk is the
k-th transposition of the matrix S.

3. IDENTIFYING MUSICAL PATTERNS

The discovery of patterns and their various occurrences in-
volves retrieving actual note collections (which may nest
and/or overlap), and so this task can be seen as more com-
plex than structural segmentation, which involves labeling
a single, temporal partition of an audio signal. We define
a repeating musical pattern to be a short idea that is re-
peated at least once across the entire piece, even though
this repetition may be transposed or contain various time
shifts. Therefore, each pattern is associated with a set of
occurrences that will not necessarily be exact. The pat-
terns and their occurrences may overlap with each other,
and this is perfectly acceptable in the context of pattern
discovery. An optimal algorithm for this task would (1)
find all the patterns contained in a piece and (2) identify all
the occurrences across the piece for each pattern found. In
this section we describe our algorithm, which uses audio
recordings as input and finds polyphonic patterns as well
as a list of all the discovered occurrences for each of the
patterns. A block-diagram of the entire process is depicted
in Figure 2.

Chromagram

Self Similarity
Matrix

Key Invariant
SSM

Find Repeated
Segments ν, θ, ρ

Cluster Segments
into Patterns

Audio

Patterns

Θ

Figure 2. Block diagram of the proposed algorithm.

3.1 Rhythmic-Synchronous Harmonic Feature
Extraction

Given a one-channel audio signal x sampled at 11025 Hz
representing a piece of music, we compute the spectrogram
using a Blackman window of Nw = 290 milliseconds,
with a hop size of Nw/2. We then compute a constant-
Q transform from the spectrogram starting at 55 Hz (cor-
responding to the note A1 in standard tuning) comprising
four octaves. Finally, we collapse each of the 12 pitches
of the western scale into a single octave to obtain a chro-
magram, a matrix of 12 × N , which is commonly used to
represent harmonic features [18]. We normalize the chro-
magram such that the maximum energy for a given time
frame is 1. In this harmonic representation we can no
longer differentiate between octaves, but its compactness
and the energy of each pitch class will become convenient
when identifying harmonic repetitions within a piece.

We then use a beat tracker [5] in order to average the
time frames into rhythmic frames. Instead of using the
traditional beat-synchronous approach, which is typically
employed in a segmentation task, we divide each beat dura-
tion by 4 and aggregate accordingly, thus having N = 4B
time frames, where B is the number of beats detected in
the piece. The motivation behind this is that patterns may
not start at the beat level, as opposed to the case for long
sections. Furthermore, adding a finer level of granularity
(i.e., analyzing the piece at a sixteenth-note level instead
of every fourth note or at the beat level) should yield better
results.

3.2 Finding Repeated Segments

We make use of the transposition-invariant SSM S de-
scribed in Section 2.2, computed from the chromagram of
a given audio signal using the Euclidean distance, in or-
der to identify repeated segments. As opposed to the task
of segmentation, the goal here is to find all possible re-
peated segments in S, independent of how short they are
or the amount of overlap present. The other major dif-
ference is that we do not aim to find all of the segments
of the piece, but rather identify all of the repeated ones.

Repeated segments appear in S as diagonal “stripes”, also
known as paths. If the beat-tracker results in no errors (or
if the piece contains no tempo variations), these stripes will
be perfectly diagonal.

3.2.1 Quantifying Paths with a Score

We propose a score-based greedy algorithm to efficiently
identify the most prominent paths in S. Starting from
S ∈ RN×N , we set half of its diagonals to zero, including
the main one, due to its symmetrical properties, resulting
in Ŝ, s.t. Ŝ(n,m) = 0 if n ≤ m and Ŝ(n,m) = S(n,m)
if n > m,∀n,m ∈ [1 : N] . We then compute a score
function σ for each possible path in all the non-zero di-
agonals of Ŝ , resulting in a search space of N(N − 1)/2
possible positions in which paths can start.

Before introducing the score function σ, we define a
trace function given a square matrixX ∈ RNx×Nx with an
offset parameter ω:

tr(X,ω) =

Nx−ω∑
i=1

X(i, i+ ω), ω ∈ Z (2)

As can be seen from this equation, when ω = 0 we have
the standard trace function definition.

The score function σ uses various traces of the matrix
that comprises a possible path in order to quantify the de-
gree of repetition of the path. If a possible path starts
at indices n,m and has a duration of M time frames,
then the matrix that the path defines is P ∈ RM×M , s.t.
P (i, j) = Ŝ(n + i − 1,m + j − 1),∀i, j ∈ [1 : M]. We
now can define the score σ as the sum of the closest traces
to the diagonal of P (i.e., those with a small ω) and sub-
tract the traces that are farther apart from the diagonal (i.e.,
where ω is greater). We then normalize in order to obtain
a score independent from the duration M of the possible
path:

σ(ρ) =

(∑ρ−1
ω=−(ρ−1) tr(P, ω)

)
− tr(P,±ρ)

M +
∑ρ−1
i=1 2(M − i)

(3)

where ρ ∈ N is the maximum offset to be taken into ac-
count when computing the traces of P . The greater the ρ,
the greater the σ for segments that contain substantial en-
ergy around their main diagonal (e.g., paths that contain
significant rhythmic variations), even though the precision
decreases as ρ increases.

Examples for various σ(ρ) can be seen in Figure 3. For
a perfectly clean path (left), we see that ρ = 1 gives the
maximum score of 1. However, the score decreases as ρ
increases, since there is zero energy in the diagonals right
next to the main diagonal. On the other hand, for matrices
extracted from audio signals (middle and right), we can see
that the scores σ(1) are low, indicating that the diagonals
next to the main diagonal contain amounts of energy simi-
lar to the main diagonal. However, when ρ > 1, the score
is substantially different from a matrix with a path (middle)
and a matrix without one (right).

σ(1)=1
σ(2)=0.36
σ(3)=0.22

σ(1)=-0.48
σ(2)=0.44
σ(3)=0.55

σ(1)=-0.46
σ(2)=0.21
σ(3)=0.32

Figure 3. Three examples showing the behavior of the path
score σ(ρ). The one on the left shows a synthetic example of a
perfect path. The one in the middle contains a real example of
a path in which there is some noise around the diagonal of the
matrix. In the example on the right, a matrix with no path is
shown.

3.2.2 Applying the Score

For all N(N − 1)/2 positions in which paths can poten-
tially start in Ŝ, we want to extract the most prominent ones
(i.e., the ones that have a high σ). At the same time, we
want to extract the paths from beginning to end in the most
accurate way possible. The algorithm that we propose as-
signs a certain σ to an initial possible path ẑ of a minimum
length of ν time frames, which reduces the search space to
(N −ν+ 1)(N −ν)/2. If the score σ is greater than a cer-
tain threshold θ, we increase the possible path by one time
frame, and recompute σ until σ ≤ θ. By then, we can store
the path ẑ as a segment in the set of segments Z . In order
to avoid incorrectly identifying possible paths that are too
close to the found path, we zero out the found path from
Ŝ, including all the ρ closest diagonals, and keep looking,
starting from the end of the recently found path.

The pseudocode for this process can be seen in Algo-
rithm 1, where |x| returns the length of the path x, {x}
returns the path in which all elements equal x, the func-
tion ComputeScore computes the σ(ρ) as described in Sec-
tion 3.2.1, OutOfBounds(x, X) checks whether the path x
is out of bounds with respect to X , IncreasePath(x) in-
creases the path x by one (analogously as DecreasePath),
and ZeroOutPath(X, x, ρ) assigns zeros to the path x found
in X , including all the closest ρ diagonals.

Algorithm 1 Find Repeated Segments

Require: Ŝ, ρ, θ, ν
Ensure: Z = {z1, . . . , zk}

for ẑ ∈ Ŝ ∧ |ẑ| = ν ∧ ẑ 6= {0} do
b← False
σ ← ComputeScore(ẑ, ρ)
while σ > θ ∧ ¬OutOfBounds(ẑ, Ŝ) do
b← True
ẑ ← IncreasePath(ẑ)
σ ← ComputeScore(ẑ, ρ)

end while
if b then
Z.add(DecreasePath(ẑ))
ZeroOutPath(Ŝ, ẑ, ρ)

end if
end for
return Z

An example of the paths found by the algorithm is
shown in Figure 4. Parts of some segments are repeated
as standalone segments (i.e., segments within segments),
therefore allowing overlap across patterns as expected in
this task. Observe how some of the segments repeat al-
most exactly across the piece—there is a set of patterns at
the top of the matrix that appears to repeat at least three
times. The next step of the algorithm is to cluster these
segments together so that they represent a single pattern
with various occurrences.

0 500 1000 1500
Time Frames

0

500

1000

1500

T
im

e
 F

ra
m

e
s

Figure 4. Paths found (marked in white) using the proposed
algorithm for Chopin’s Op. 24 No. 4., with θ = 0.33, ρ = 2.

3.3 Clustering the Segments

Each segment z ∈ Z , defined by the two indices in which
it starts (si, sj) and ends (ei, ej) in Ŝ, contains two occur-
rences of a pattern: the one that starts in si and ends in ei
and the one that occurs between the time indices sj and
ej . In order to cluster the repeated occurrences of a single
pattern, we find an occurrence for each segment z ∈ Z if
one of the other segments in Z starts and ends in similar
locations with respect to the second dimension of Ŝ. Note
that we set to zero the bottom left triangle of the matrix as
explained in Section 3.2.1, so we cannot use the first di-
mension to cluster the occurrences. Formally, a segment ẑ
is an occurrence of z if

(szj −Θ ≤ sẑj ≤ szj + Θ)∧ (ezj −Θ ≤ eẑj ≤ ezj + Θ) (4)

where szj represents the starting point of the segment z in
the second dimension of Ŝ and analogously ezj is the end-
ing point, and Θ is a tolerance parameter.

3.4 Final Output

At this point, we have a set of patterns with their respective
occurrences represented by their starting and ending time-
frame indices. Even though the algorithm is not able to dis-
tinguish the different musical lines within the patterns, we
can use the annotated score to output the exact notes that
occur during the identified time indices, as suggested in
the MIREX task [1]. If no score is provided, only the time

points will be presented. In order to overcome this limita-
tion in future work, the audio should be source-separated to
identify the different lines and perform an F0 estimation to
correctly identify the exact melody that defines the pattern
(and not just the time points at which it occurs). Progress
toward this goal has been presented in [2].

3.5 Time Complexity Analysis

Once the rhythm-synchronous chromagram is computed,
the process of calculating the transposition-invariant SSM
is O(13N2) = O(N2), where N is the number of time
frames of the chromagram. The procedure to compute the
score given a path has a time complexity of O(2ρM) =
O(ρM), where ρ is the required parameter for the compu-
tation of the score, and M is the length of the path from
which to compute the score. The total process of iden-
tifying segments is O

(
(N−ν+1)(N−ν)

2 ρM
)

= O((N −
ν)2ρM), where ν is the minimum number of time frames
that a pattern can have. Asymptotically, we can neglect the
clustering of the segments, since the length of Z will be
much less than N . Therefore, the total time complexity of
the proposed algorithm is O(N2 + (N − ν)2ρM).

4. EVALUATION

We use the JKU Patterns Development Dataset 1 to evalu-
ate our algorithm. This dataset is comprised of five clas-
sical pieces annotated by various musicologists and re-
searchers [1]. This dataset is the public subset of the
one employed to evaluate the Pattern Discovery task at
MIREX, using the metrics described below.

4.1 Metrics

Two main aspects of this task are evaluated: the patterns
discovered and the occurrences of the identified patterns
across the piece. Collins and Meredith proposed metrics to
quantify these two aspects, which are detailed in [1]; all of
these metrics use the standard F1 accuracy score, defined
as F1 = 2PR/(P + R), where P is precision (such that
P = 1 if all the estimated elements are correct), andR = 1
is recall (such that R = 1 if all the annotated elements are
estimated).

Establishment F1 Score (Fest): Determines how the
annotated patterns are established by the estimated output.
This measure returns a score of 1 if at least one occurrence
of each pattern is discovered by the algorithm to be evalu-
ated.

Occurrence F1 Score (Fo): For all the patterns found,
we want to estimate the ability of the algorithm to capture
all of the occurrences of these patterns within the piece in-
dependently of how many different patterns the algorithm
has identified. Therefore, this score would be 1 if the al-
gorithm has only found one pattern with all the correct oc-
currences. A parameter c controls when a pattern is con-
sidered to have been discovered, and therefore whether it
counts toward the occurrence scores. The higher the c, the

1 https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip

smaller the tolerance. In this evaluation, as in MIREX, we
use c = .75 and c = .5.

Three-Layer F1 Score (F3): This measure combines
both the patterns established and the quality of their occur-
rences into a single score. It is computed using a three-step
process that yields a score of 1 if a correct pattern has been
found and all its occurrences have been correctly identi-
fied.

4.2 Results

The results of the proposed algorithm, computed using
the open source evaluation package mir_eval [19], are
shown in Table 1, averaged for the entire JKU Dataset,
along with an earlier version of our algorithm submitted
to MIREX [15], another recent algorithm called SIARCT-
CFP [2] that is assessed using both audio and symbolic rep-
resentations as input in [3], and “COSIATEC Segment”, a
method that only uses symbolic inputs [12]. We use this
latter method for comparison because it is the only sym-
bolic method in which we have access to all of the result-
ing metrics, and SIARCT-CFP since it is the most recent
method that uses audio as input. The parameter values
used to compute these results, ν = 8, θ = 0.33, ρ = 2,
and Θ = 4, were found empirically. We can see how our
algorithm is better than [15] in all the metrics except run-
ning time; it also finds more correct patterns than [3] (the
current state-of-the-art when using audio as input).

Our algorithm obtains state-of-the-art results when ex-
tracting patterns from audio, obtaining an Fest of 49.80%.
This is better than the symbolic version of [2] and almost
as good as the algorithm described in [12]. The fact that
our results are superior or comparable to the two other al-
gorithms using symbolic representations indicates the po-
tential of our method.

When evaluating the occurrences of the patterns, we
see that our algorithm is still better than [15], but worse
than [2] (at least for c = .5, which is the only reported re-
sult). Nevertheless, the numbers are much lower than [12].
In this case, working with symbolic representations (or es-
timating the F0 in order to apply a symbolic algorithm as
in [2]) yields significantly better results. It is interesting to
note that when the tolerance increases (i.e. c = .5), our
results improve as opposed to the other algorithms. This
might be due to the fact that some of the occurrences found
in the SSM were actually very similar (therefore they were
found in the matrix) but were slightly different in the anno-
tated dataset. A good example of this would be an occur-
rence that contains only one melodic voice. Our algorithm
only finds points in time in which an occurrence might be
included, it does not perform any type of source separation
in order to identify the different voices. If the tolerance
decreases sufficiently, a polyphonic occurrence would be
accepted as similar to a monophonic one corresponding to
the same points in time.

Our three layer score (F3) is the best result when using
audio recordings, with an F-measure of 31.74% (unfortu-
nately this metric was not reported in [2]). This metric
aims to evaluate the quality of the algorithm with a single

Alg Pest Rest Fest Po(.75) Ro(.75) Fo(.75) P3 R3 F3 Po(.5) Ro(.5) Fo(.5) Time (s)

Proposed 54.96 51.73 49.80 37.58 27.61 31.79 35.12 35.28 32.01 45.17 34.98 38.73 454
[3] 14.9 60.9 23.94 – – – – – – 62.9 51.9 56.87 –
[15] 40.83 46.43 41.43 32.08 21.24 24.87 30.43 31.92 28.23 26.60 20.94 23.18 196
[3] 21.5 78.0 33.7 – – – – – – 78.3 74.7 76.5 –
[12] 43.60 63.80 50.20 65.40 76.40 68.40 40.40 54.40 44.20 57.00 71.60 63.20 7297

Table 1. Results of various algorithms using the JKU Patterns Development Dataset, averaged across pieces. The top rows of the table
contain algorithms that use deadpan audio as input. The bottom rows correspond to algorithms that use symbolic representations as input.

score, including both pattern establishment and occurrence
retrieval. Our results are still far from perfect (32.01%), but
when compared to an algorithm that uses symbolic repre-
sentations [12] (44.21%), it appears our results are not far
from the state-of-the-art for symbolic representations.

Finally, our algorithm takes more than twice as long as
[15]. However, our method is over 16 times faster than
[12], indicating it is efficient in terms of computation time.
This algorithm is implemented in Python and available for
public download. 2

5. CONCLUSIONS

We presented a method to discover repeating polyphonic
patterns using audio recordings as input. The method
makes use of various standard techniques typically used for
music segmentation. We evaluated our method using the
JKU Pattern Development Dataset and showed how it ob-
tains competent results when retrieving all the occurrences
of the patterns and state-of-the-art results when finding pat-
terns. When the algorithm is compared to others that use
symbolic representations, we see that it is comparable or
superior in terms of the correct patterns found. In future
work, source separation might be needed to successfully
identify patterns that only comprise a subset of the differ-
ent musical lines.

6. REFERENCES

[1] Tom Collins. Discovery of Repeated Themes & Sections, 2013.

[2] Tom Collins, Andreas Arzt, Sebastian Flossmann, and Gerhard Wid-
mer. SIARCT-CFP: Improving Precision and the Discovery of In-
exact Musical Patterns in Point-set Representations. In Proc. of the
14th International Society for Music Information Retrieval Confer-
ence, pages 549–554, Curitiba, Brazil, 2014.

[3] Tom Collins, B Sebastian, Florian Krebs, and Gerhard Widmer.
Bridging the Audio-Symbolic Gap: The Discovery of Repeated Note
Content Directly From Polyphonic Music Audio. In Audio Engineer-
ing Society Conference: 53rd International Conference: Semantic
Audio, pages 1–12, London, UK, 2014.

[4] Darrell Conklin and Christina Anagnostopoulou. Representation and
Discovery of Multiple Viewpoint Patterns . In Proc. of the Inter-
national Computer Music Conference, pages 479–485, La Havana,
Cuba, 2001.

[5] Daniel P. W. Ellis and Graham E. Poliner. Identifying ’Cover Songs’
with Chroma Features and Dynamic Programming Beat Tracking. In
Proc. of the 32nd IEEE International Conference on Acoustics Speech
and Signal Processing, pages 1429–1432, Honolulu, HI, USA, 2007.

2 https://github.com/urinieto/MotivesExtractor

[6] James C Forth. Cognitively-motivated Geometric Methods of Pat-
tern Discovery and Models of Similarity in Music. PhD thesis, Glod-
smiths, University of London, 2012.

[7] James C. Forth and Geraint A. Wiggins. An Approach for Identify-
ing Salient Repetition in Multidimensional Representations of Poly-
phonic Music. In Joseph Chan, Jacqueline W. Daykin, and M. Sohel
Rahman, editors, London Algorithmics 2008: Theory and Practice,
pages 44–58. UK: College Publications, 2009.

[8] Berit Janssen, W Bas De Haas, Anja Volk, and Peter Van Kranenburg.
Discovering Repeated Patterns in Music: State of Knowledge, Chal-
lenges, Perspectives. In Proc. of the 10th International Symposium
on Computer Music Multidisciplinary Research, Marseille, France,
2013.

[9] Olivier Lartillot. Multi-Dimensional motivic pattern extraction
founded on adaptive redundancy filtering. Journal of New Music Re-
search, 34(4):375–393, December 2005.

[10] Kjell Lemström. String Matching Techniques for Music Retrieval.
PhD thesis, University of Helsinki, Finland, 2000.

[11] David Meredith. Point-set Algorithms For Pattern Discovery And
Pattern Matching In Music. In Tim Crawford and Remco C.
Veltkamp, editors, Proc. of the Dagstuhl Seminar on Content-Based
Retrieval., Dagstuhl, Germany, 2006.

[12] David Meredith. COSIATEC and SIATECCompress: Pattern Discov-
ery by Geometric Compression. In Music Information Retrieval Eval-
uation eXchange, Curitiba, Brazil, 2013.

[13] Meinard Müller. Information Retrieval for Music and Motion.
Springer, 2007.

[14] Meinard Müller and Michael Clausen. Transposition-Invariant Self-
Similarity Matrices. In Proc. of the 8th International Conference on
Music Information Retrieval, pages 47–50, Vienna, Austria, 2007.

[15] Oriol Nieto and Morwaread Farbood. MIREX 2013: Discover-
ing Musical Patterns Using Audio Structural Segmentation Tech-
niques. In Music Information Retrieval Evaluation eXchange, Cu-
ritiba, Brazil, 2013.

[16] Oriol Nieto and Morwaread Mary Farbood. Perceptual Evaluation of
Automatically Extracted Musical Motives. In Proc. of the 12th In-
ternational Conference on Music Perception and Cognition, pages
723–727, Thessaloniki, Greece, 2012.

[17] Oriol Nieto, Eric J. Humphrey, and Juan Pablo Bello. Compressing
Audio Recordings into Music Summaries. In Proc. of the 13th Inter-
national Society for Music Information Retrieval Conference, Porto,
Portugal, 2012.

[18] Jouni Paulus, Meinard Müller, and Anssi Klapuri. Audio-Based Mu-
sic Structure Analysis. In Proc of the 11th International Society of
Music Information Retrieval, pages 625–636, Utrecht, Netherlands,
2010.

[19] Colin Raffel, Brian Mcfee, Eric J. Humphrey, Justin Salamon, Oriol
Nieto, Dawen Liang, and Daniel P. W. Ellis. mir eval: A Transparent
Implementation of Common MIR Metrics. In Proc. of the 15th Inter-
national Society for Music Information Retrieval Conference, Taipei,
Taiwan, 2014.

[20] Ron Weiss and Juan Pablo Bello. Unsupervised Discovery of Tem-
poral Structure in Music. IEEE Journal of Selected Topics in Signal
Processing, 5(6):1240–1251, 2011.

