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ABSTRACT 
Motives are the shortest melodic ideas or patterns that recur in a 
musical piece. This paper presents an algorithm that automatically 
extracts motives from score-based representations of music.  The 
method combines perceptual grouping principles with data mining 
techniques, using score-based representations of music as input.  The 
algorithm is evaluated by comparing its output to the results of an 
experiment where participants were asked to label representative 
motives in six musical excerpts. The perceptual judgments were 
found to align well with the motives automatically extracted by the 
algorithm and the experimental data was further used to tune the 
threshold values for similarity and strength of grouping boundaries. 

I. INTRODUCTION 
In order to understand how various structural features 

contribute to the listener’s cognition of a piece, it is essential 
to be able to parse a musical surface into perceptually valid 
segments. One such method is described by Lerdahl and 
Jackendoff (1983), who present a series of grouping principles 
to formulate a formal analysis system that defines a musical 
grammar. They describe the process of grouping auditory 
stimuli as psychologically analogous to the one of visual 
perception, and many of their rules are based on Gestalt 
principles of grouping. This psychological approach to 
analysing musical structure and patterns provides a 
framework for understanding the perception of musical 
motives. 

A motive can be defined as the shortest melodic idea or 
pattern that recurs in a musical piece, and it is often one of the 
most characteristic elements of the piece. Moreover, listeners 
can often identify a piece by just hearing its primary motives. 
Considerable prior work has been done on motive 
identification, much of which has its origins in the study of 
melodic similarity. Hewlett and Selfridge-Field (1998) 
provide a significant collection of articles that discuss various 
methods of assessing similarity between melodies given a 
symbolic representation of music. Other relevant prior work 
includes cognitive studies on the perception and modeling of 
melodic similarity (Ferrand, Nelson, & Wiggins, 2003; 
Martínez, 2001) and perspectives on rhythmic similarity 
(Aloupis et al., 2006; Martins, 2005; Toussaint, 2004). 

Automatic methods of extracting motives given 
score-based and audio-based representations of music make 
use of both melodic and rhythmic similarity (Lartillot, 2005; 
Jiménez et al., 2010). Weiss & Bello (2011), on the other 
hand, use a probabilistic approach based on non-negative 
matrix factorization applied to audio signals.  

What these approaches have in common is that they are 
based on repetition of material. Our approach to automatically 
extracting motives from score-based representations of music 
combines a similar data mining approach filtered by 
perceptual factors based on Gestalt grouping principles. These 

rules are mostly based on Chapter 3 of Lerdahl and 
Jackendoff’s Generative Theory of Tonal Music (1983) and 
take into account the Gestalt principles of proximity, 
similarity and good continuation. Having a perceptual 
framework to extract possible motives should ideally lead to a 
better understanding of what makes a particular melodic 
segment more plausible as a coherent motive than others. 
Previous work has employed similar Gestalt grouping 
strategies for automatic segmentation of music and melodic 
similarity (Ferrand et al, 2003; Hamanaka, Hirata, & Tojo, 
2004; Temperley, 2001), however, our goal is to combine 
both the data mining and perceptual approaches to the 
particular analytical task of motive extraction. 

In order to evaluate the algorithm, an experiment was 
conducted in which musically trained participants were asked 
to determine the representative motives in six musical 
excerpts and rate each chosen motive based on its relative 
prominence. The empirical judgments were then compared 
with the output of the algorithm.  

II. ALGORITHM DESCRIPTION 
The input of the algorithm consists of monophonic, 

score-based representations of music (e.g., MIDI, Music 
XML). Two dimensions are considered when comparing 
melodic sequences: the diatonic interval between notes and 
the rhythmic values of the notes. The L1-norm is used to 
determine the “distance” in each dimension.  Formally, this 
distance metric is defined as  

 
d(x,y) = |xr – yr|+|xdi –ydi| , 

 
where xr represents the rhythmic information of the symbol 
(i.e., note event) x, and xdi is the diatonic interval between the 
previous symbol and the current symbol x. The algorithm can 
be divided into two parts that make use of this metric and that 
are discussed in the following subsections. 

A. Extraction of Potential Motives 
The first stage of the algorithm is to try to identify all 

sub-sequences that are potential motives within a sequence of 
symbols that contains the pitch and rhythmic information of 
all the notes of the monophonic piece. To do so, we look for 
sub-sequences that meet the following criteria: 

 
1. A potential motive must be at least three notes long. 
2. A potential motive must repeat at least once; exact 

repetition is not necessary, but the distance of the 
repetitions must be less than a given threshold τ that can 
be adjusted. 

3. A potential motive cannot have a rest that is longer than 
25% of its length. 

4. A potential motive must have a uniform contour shape. 
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These rules are mostly based on Gestalt principles of 
similarity, proximity and good continuation. The similarity 
rule is exemplified by the second rule listed above. The third 
and fourth rules mix the principles of proximity and good 
continuation. Finally, for each one of the potential motives, 
we store the number of times they appear within the piece (a 
minimum of two). 

B. Clustering and Selection of the Motives 
Once the set of potential motives that meet these criteria 

have been extracted and the frequency counts for each of them 
have been recorded, they are clustered into different groups 
based on how different they are from each other. To do so, a 
distance matrix is defined to find overlaps, where the size of 
the matrix is equal to the square of the number of potential 
motives previously found. 

To compute the distance between each pair of potential 
motives, they are aligned based on their downbeats and the 
distance metric described above is computed for all possible 
shifts of alignment between the two motives. The distance 
value that is minimal across all possible shifts on the 
downbeats is the one stored in the matrix.  

The matrix values are then used to group similar motives: if 
the distance between two potential motives is below a certain 
threshold θ, they are clustered in the same group. For each 
group, one final motive is selected: the one that has the 
median length across all the motives of that cluster. The 
output of the algorithm is a set of filtered motives, one for 
each one of the clusters. 

C. Implementation 
An implementation that extracts the set of potential motives 

given the rules defined in section II.A can be implemented 
using an algorithm that has a quadratic complexity in time, 
O(n2), where n is the number of notes contained in the melody. 
The space complexity will vary depending on the amount of 
potential motives found m, but it is low enough to be 
negligible. The clustering and filtering described in section 
II.B has a time complexity of O( m2k2 ), where k is the average 
length of the potential motives  (i.e., k << m ). 

The current implementation used to evaluate the algorithm 
was written in Python and makes use of the music21 
framework (Cuthbert & Ariza, 2010) in order to easily read 
and parse music XML files. 

 

III. METHOD 
An experiment conducted to evaluate the quality of the 

algorithm. The goal of the study was to evaluate the results of 
the algorithm by comparing the automatically extracted 
motives with the perceptual judgments made by musicians. 
Furthermore, these findings would help tune the thresholds τ 
and θ of the algorithm as described in the previous section. 

A. Participants and Task 
Fourteen musical trained subjects were asked to identify 

motives for six different monophonic excerpts. Subjects were 
all graduate students at New York University and had an 
average of 10 years of formal musical training (SD = 2.3).  
They were asked identify all motives in an excerpt and to rate 
them on overall relevance. The rating choices were “Not so 

relevant”, “Relevant”, and “Highly relevant”. The rating 
values were important in determining the highest ranked 
motives for each excerpt, with different weights assigned to 
each choice (1 for “Not so relevant”, 2 for “Relevant”, and 3 
for “Highly relevant”). 

B. Stimuli 
The excerpts used in the experiment were taken from the 

following pieces: 
 

1. Bach – Cantata BWV 1, Movement 6, Horn 
2. Bach – Cantata BWV 2, Movement 6, Soprano 
3. Beethoven – String Quartet, Op. 18, No. 1, Violin I 
4. Haydn – String Quartet, Op. 74, No. 1, Violin I 
5. Mozart – String Quartet, K. 155, Violin I 
6. Mozart – String Quartet, K. 458, Violin I 

 
Some of these excerpts were intentionally chosen because 

they were particularly hard for humans to analyse given the 
structural ambiguity of some of the musical material. For 
example, the Bach chorale had very little rhythmic variation 
or clear grouping cues aside from phrase ending points. In 
general, Excerpts 1, 5 and 6 proved to be particularly difficult 
to parse for humans, and as we see in the Results section, 
there are some interesting discrepancies in the data. The data 
resulting from these “difficult” excerpts enable us to ascertain 
the amount and type of overlap that frequently occurs in 
motive perception. Excerpt 3 (shown in Figure 1), on the other 
hand, has more clearly defined motives that are readily 
apparent from a quick glance at the score. This excerpt will be 
used to discuss the results in detail. 

 

IV. RESULTS 

A. Quantifying the Experimental Results 
The first step in evaluating the relative importance of the 

motives indicated by the subjects was to quantify each 
response/selection by the importance weighting described in 
the previous section.  It was common to find a high degree of 
overlap between motives across subjects; however, there was 
often disagreement about the start and end points. The 
motives were thus manually clustered into groups based on 
overlap in a manner similar to the process described in 
Section II.B. Once grouped, all of the weighted responses for 
each motive were summed for each cluster, and the clusters 
were then sorted based on these values. Finally, a 
representative motive for each cluster was selected by 
choosing a version that had the median length with respect to 
the other motives in that cluster. 

B. Evaluating the Experimental Results 
For the purposes of this paper, Excerpt 3 of the experiment, 

taken from Beethoven’s Op. 18 No. 1 string quartet, will serve 
as the focus of the evaluation.  The excerpt is shown in its 
entirety in Figure 1. Motives in this excerpt were relatively 
easy to discern and the empirical results indicate a significant 
degree of agreement. Figure 2 shows the most frequently 
chosen motives from Excerpt 3, ordered from the highest to 
lowest-rated in importance.  It is interesting to observe the 
subtle differences in these selections.  While some motives 
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shown in Figure 2 are simply chromatic or diatonic 
transpositions of another (e.g., motives 2 and 3), there are 
other selections that differ with regard to start and end points 
(e.g., motives 7-8 and 10-11).  These choices indicate that 
even in a piece with clearly defined motivic material, there is 
still disagreement concerning the most representative versions 
of each motive.   
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Figure 1. Excerpt 3, from Beethoven’s string quartet Op. 18, No. 
1. 

 

 
Figure 2. Motives most frequently chosen by human listeners for 
Excerpt 3.  Top: All of the most relevant motives identified by 
subjects. Bottom: Motives representing the three major clusters 
of responses. Motives are ordered from highest to lowest 
importance. 

 

Most of the motives in Figure 2 can be clustered into a 
single group encompassing motives 1-4 and 6-9. Motives 5, 
10 and 11 form another group, leaving motive 12 in a group 
of its own. This results in three primary motives selected by 
the subjects who took the experiment. These primary motives, 
labelled A, B, and C, can be seen in the bottom section of 
Figure 2.   

As noted, many of differences between similar motives 
selected by subjects concerned designated start and end points. 
However, additional variations included difference in contour 
as well as the duration of certain notes.  The difficulty for 
both a human and a computer program lies in determining the 
threshold between simple variations of a primary motive 
versus a significant difference that results in a new perceptual 
motive category altogether. 

C. Tuning the Parameters 
Given the empirical data, the next step was to use these 

results to tune the two different thresholds (τ and θ) of the 
algorithm. This was accomplished by maximizing the amount 
of overlap between the output of the algorithm and the results 
of the experiment. Interestingly, tuning these thresholds given 
data from one of the excerpts not only improved the results 
for that particular excerpt (as expected), but also for other 
excerpts. This makes a good case for the perceptual validity of 
the method, given that it generalizes well. Excerpt 3 was 
chosen for the purposes of tuning the thresholds because it 
resulted in the highest degree of agreement across subjects. 
The values for the thresholds that maximized overlap with 
Excerpt 3 results were τ = 1 and θ = 0.65.  τ = 1 means that 
there can be a maximum of one differing diatonic interval or 
rhythmic value when determining whether repetition of that 
motive exists elsewhere (when finding similarity using the 
L1-norm). θ = 0.65 means there must be a minimum of 65% 
overlap in order to cluster two motives into the same group. 

It is important to realize that no specific set of thresholds 
will optimally work for all the pieces.  However, setting these 
parameters by using the empirical data does tune the 
algorithm based on multiple human judgments rather than 
arbitrary values.  

The representative motives extracted by the algorithm for 
Excerpt 3 (post-tuning) is shown in Figure 3. 

 

 
Figure 3. Motives extracted from Excerpt 3 by the automatic 
algorithm. 

As can be seen in Figure 3, motive 1 is representative of the 
set of motives that previously categorized as cluster A in the 
experimental results. More specifically, this motive is 
identical to motive 8 from Figure 2; it was selected by the 
algorithm from a cluster containing 57 automatically extracted 
potential motives. This group of potential motives 
encompasses all of the cluster A motives shown in the top 
section of Figure 2. There is clearly a high degree of overlap 
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between the first automatically extracted motive and the 
cluster A motives from the experimental results.  

The second motive (Figure 3) is also selected from a cluster 
contained that highly similar to the motives from cluster B in 
the experimental results. The automatically extracted motive 
representing this group is in fact identical to motive 10 from 
the experimental results. If the motives contained within the 
cluster are examined (in this case, 29 potential motives), both 
motives 5 and 11 from the experimental results are found 
among them.   

Finally, the third automatically extracted motive represents 
a cluster formed by the repetitions found in the sixteenth note 
passages represented in the empirical results by motive 12 in 
Figure 2. In this case, the algorithm considers the descending 
diatonic scale composed of four notes the best way to 
represent this cluster. Unfortunately, this scale only appears 
once in the piece, but the algorithm designates it as similar to 
the last four notes of motive 12 because there is only one 
directional difference in their contours. Despite this 
discrepancy, the algorithm is still able to capture 11 out of 12 
motives selected by the subjects. This leads to an overall 
91.6% overlap between the experimental results and 
automatic output for Excerpt 3. 

C.  Results for All Excerpts 
Table 1 shows the overall comparison results between the 

empirical data and the algorithm output for all of the excerpts. 
The scores are computed following the same methodology as 
used for Excerpt 3: the most relevant motives of the empirical 
results are clustered and the amount of overlap they have with 
respect to the automatically extracted motives is computed. 
Each experimental cluster is weighted depending on the 
number of motives contained in the group (e.g. motive A from 
Figure 2 encompasses eight motives, thus has a higher weight 
than motive B); thus overlap with the automatic results are 
scaled by those weights. 

 

 Table 1.  Results for each one of the excerpts from the empirical 
experiment 

 
Excerpt 1 (Bach BWV 1) has a long melody that repeats 

twice in the beginning of the excerpt; some subjects chose the 
entire melody as a motive (over 40 notes long). Overall, the 
algorithm captured four out of the five clusters that resulted 
from the experimental data. The one motive it didn’t find was 
missed due to reasons similar to case of motive 3 in Excerpt 3. 

For Excerpt 2 (Bach BWV 2), there was a strong agreement 
with the empirical experiment results. Even though this piece 
does not have a clear motivic structure, its length is quite brief, 
providing few choices for human analysts. Subjects agreed on 
two primary motives, both so brief that the automatic 
algorithm selected both of them as one long motive (as some 
of the subject subjects did as well).  

Excerpt 4 (Haydn Op. 74, No. 1) does not contain any 
representative motives that can be identified easily. This is 

reflected in the results, which show that there was 
considerable disagreement among subjects when selecting the 
motives. The output of the algorithm, however, corresponds 
with the results experimental results in general. There are four 
motives that are automatically extracted, and they contain the 
11 primary motives that were selected by the subjects.  

Excerpt 5 (Mozart K. 155) is also difficult to analyse. 
There are four primary motives, and two of them differ only 
in contour.  The algorithm does not differentiate between 
these two due to the similarity thresholds employed. In all, the 
algorithm extracted four motives, three of them corresponding 
with the experimental results. 

Excerpt 6 (Mozart K. 458) is another difficult-to-parse 
excerpt. Subjects agreed on four main motives. The algorithm 
also produced four motives, however three of them formed 
parts of the primary motive selected by the subjects. The two 
motives selected by the subjects that were not captured by the 
algorithm have different contours but similar diatonic 
intervals and rhythmic durations; the algorithm placed them 
into the same cluster as one of the other automatically selected 
motives. The thresholds in this case were too generous and 
ignored the smaller dissimilarities; given this problem, the 
algorithm only matched two out of four main motives in 
Excerpt 6. 

Across all excerpts, there was a mean matching score of 
79.6%, which was deemed successful given the difficulty and 
subjectivity of the task at hand.  

 

V. CONCLUSIONS AND FUTURE WORK 
This paper presents an algorithm that automatically extracts 

musical motives from symbolic representations of 
monophonic music by combining data-mining techniques with 
perceptual grouping rules. An experiment was described in 
which musically trained subjects were asked to label motives 
in six musical excerpts. These data were then used to evaluate 
and improve the algorithm. Using the results from one 
musical excerpt, thresholds in the algorithm were tuned to 
maximize agreement with human judgments.  The algorithm 
was then evaluated for all excerpts by comparing its output to 
the empirical data. Results of this comparison indicate a high 
degree of agreement with human analysis. 

One of the main issues explored was finding the right 
threshold values for the algorithm in order to successfully 
characterize perceptual similarity between melodic fragments.  
Future work can further improve understanding of this issue. 
A more exhaustive experiment can be conducted with a wider 
variety of musical excerpts. This might lead to a better 
understanding of what makes a particular motive distinctive in 
differing textural and stylistic contexts. 

Another future step would be to run the algorithm on a 
large collection of scores. It would be interesting to see if it is 
possible to find motives that are not only repeated across a 
piece, but also across the entire oeuvre of a composer, or to 
compare motive variations between different composers. 

Ultimately, this work could lead to the foundations of an 
algorithm that works on audio recordings as well. Whether the 
input to the algorithm is symbolic or signal based, 
higher-level hierarchical analysis of a piece can be aided by 
understanding the occurrence and recurrence of motivic 
material.  

Excerpt 1 2 3 4 5 6 Average 

Score 80.0 100 91.6 81.1 75.0 50.0 79.6 
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