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The Structure of Music  
(or why I am here)

Background



Background

Results for this MIR task are far from being perfect



Why the improvement of 
this task matters?

‣ The automatic discovery of the structure of music could: 
‣ Assist musicians when composing new pieces 
‣ Help audio engineers when editing tracks 
‣ Improve music recommendation systems 
‣ Make music players smarter 
‣ Generate music summaries to preview tracks 
‣ Yield better automatic dj/remix applications 
‣ Produce interactive visualization of musical pieces



Present novel automatic approaches to discover structure in music

Goal #1



Segment Annotation

( Trains by Porcupine Tree )



The Perception of Music 
Structure is Highly Subjective



Music Information Retrieval

‣ Standard methodology:

Algorithm Dataset

Evaluation

estimated
results

reference
annotations

adjust to 
maximize metric(s)

metric(s)

One annotation
per track

Evaluation biased
by subjectivity



Goal #2

Address the methodological issue of subjectivity inherent in the music 
segmentation task of MIR by proposing perceptual evaluations.



Automatic Approaches

‣ Four novel algorithms to discover structure in music: 

‣ Music Summaries 

‣ Pattern Discovery 

‣ Music Segmentation with Convex-NMF 

‣ Music Segmentation with 2D-FMC
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Music Summaries
‣ Goal of this MIR task: 

‣ Obtain a brief audio signal that summarizes a music 
piece in just a few seconds. 

‣ Example:



Music Summaries

Identify the most repeated parts (i.e., most relevant) 

with the least amount of overlap (Nieto et al. 2012)

Main idea

‣ Music Summary Criterion 
‣ Combine two values (harmonic mean): 
‣ Degree of Compression 
‣ Amount of Disjoint Information



Music Summaries - Results

‣ No standard evaluation for Music Summarization. 
‣ Chopin’s Mazurka Op. 30 No. 2. 
‣ 3 repeated parts (AABBCC). 
‣ Summary is composed of short parts of A, B, and C.



Automatic Approaches

‣ Four novel algorithms to discover structure in music: 

‣ Music Summaries 

‣ Pattern Discovery 

‣ Music Segmentation with Convex-NMF 

‣ Music Segmentation with 2D-FMC



Pattern Discovery Task

‣ Goal of this MIR task: 

‣ Identify the repeated parts of a given music piece. 

‣ Establish all the patterns contained in a piece 

‣ Identify all the occurrences across the piece for each pattern found  

‣ The shortest parts are typically motives. 

‣ The longest parts are typically large-scale sections.



Proposed Approach

‣ Idea: Make use of music segmentation techniques to obtain the most 
repeated parts of a given audio track using a greedy algorithm (Nieto and 
Farbood, 2014a).



Pattern Discovery - Results
‣ Evaluated on the JKU Development Dataset. 

‣ Using the same metrics as in the MIR Evaluation eXchange (MIREX). 

‣ State-of-the-art results when identifying occurrences in audio (when compared to 

audio-based algorithms that do not apply music transcription techniques). 

‣ Symbolic approaches yield superior results. 

‣ State-of-the art when establishing patterns in audio. 

‣ Competitive (and sometimes better) than other symbolic approaches.



Automatic Approaches

‣ Four novel algorithms to discover structure in music: 

‣ Music Summaries 

‣ Pattern Discovery 

‣ Music Segmentation with Convex-NMF 
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Music Segmentation

‣ Goal of this MIR task: 

‣ Identify the different segments (or sections) of a music piece: 

‣ Determine the segment boundaries. 

‣ Label the different segments based on their similarity. 

‣ Segments tend to represent large-scale musical sections (e.g., verse, 
chorus, bridge).



Music Segmentation - C-NMF

‣ Idea: Factorize harmonic representations into different “segment prototypes” 

(centroids) using a machine learning tool (Nieto and Jehan, 2013). 

‣ Convex Non-negative Matrix Factorization (C-NMF) 

‣ Music segments can have homogenous harmonic distributions.



Results

‣ Evaluated on the ISO-Beatles and SALAMI datasets. 

‣ Using the same metrics as in MIREX. 

‣ State-of-the art (compared to other approaches that extract homogeneous 
segments) in terms of: 

‣ boundary retrieval 

‣ label grouping 



Automatic Approaches

‣ Four novel algorithms to discover structure in music: 

‣ Music Summaries 

‣ Pattern Discovery 

‣ Music Segmentation with Convex-NMF 

‣ Music Segmentation with 2D-FMC



Proposed Approach

‣ Idea: Capture similarity between segments using a 

representation that is: 

‣ key-invariant 

‣ shift-invariant 

‣ tempo-agnostic 

‣ Ideal candidate: 2D-Fourier Magnitude Coefficients (Nieto 

and Bello, 2014) 



Results

‣ Evaluated on the ISO-Beatles and SALAMI datasets using MIREX metrics. 

‣ Competitive results when using ground-truth boundaries. 

‣ Strong impact on results when using estimated boundaries. 

‣ Highly efficient in terms of computation time.



Summary of Goal#1

‣ Four novel approaches to discover certain aspects of music structure: 
‣ Music Summaries 
‣ Pattern Discovery 
‣ https://github.com/urinieto/MotivesExtractor 

‣ Music Segmentation: 
‣ C-NMF 
‣ 2D-FMC 
‣ https://github.com/urinieto/msaf

https://github.com/urinieto/MotivesExtractor
https://github.com/urinieto/msaf


Main Goals

‣ Present novel automatic approaches to discover structure in music. 

‣ Address the methodological issue of subjectivity inherent in 
the music segmentation task of MIR by proposing perceptual 
evaluations.



Perceptual Evaluations

‣ Two types of novel evaluations: 

‣ Metrics for multiple annotations per track. 

‣ Modifying existing metrics to align better with perception. 

‣ Tools from Music Perception and Cognition.
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Music Information Retrieval

‣ Standard methodology:

Algorithm Dataset
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Selecting Tracks

‣ From a large collection of >2,000 human annotated tracks: 
‣ Run multiple boundary retrieval algorithms. 
‣ Rank them based on a standard evaluation metric (F-measure with a 3 seconds window). 
‣ Choose the 45 worst performing tracks (i.e. challenging from a machine point of view). 
‣ Choose the 5 best performing tracks (i.e. trivial from a machine point of view). 

‣ 5 music experts annotated the 50 selected tracks. 
‣ Two levels of segmentation: large and small. 

‣ Each track will now contain five additional two-layer segmentation annotations.



Analysis of Subjectivity
‣ Analyze the variation of the scores when evaluating the estimated boundaries with the 

new annotations. 

‣ Use a 2-way ANOVA of the average F-measure with algorithms and annotations as 
factors. 

‣ Start with the control group:

Annotations Effect:
F (5, 120) = .22, p = .95

Interaction:
F(20,120) = .13,p = .99



Analysis of Subjectivity

‣ No significant variation for the control group when using different annotations. 

‣ What about the challenging group?

Annotations Effect:
F (5, 1320) = 6.93, p < .01

Interaction:
F (20, 1320) = 1.13,p = .3



Analysis of Subjectivity

‣ Significant variation when using different annotations for the challenging tracks. 

‣ Therefore: 
‣ Subjectivity is a relevant problem when evaluating music boundaries. 
‣ At least on the challenging tracks. 

‣ Can we minimize the subjectivity effect for this task? 
‣ Yes, merging the annotated boundaries. 
‣ 4 types of merging



Merging Type I: 
Flat to Weighted Flat

Σ



Merging Type II: 
Hierarchical to Weighted Flat

Large
Small

Hierarchical

Σ

…



Merging Type III: Flat to Hierarchical

Σ
…

…



Merging Type VI: 
Hierarchical to Hierarchical

Large
Small

Hierarchical

Σ

…

…



Robustness of Merged Boundaries

‣ In order to test the robustness of this merging, I divide annotations into sets 
of 3: 
‣ 5 annotators, dividing them into sets of 3.          (                    ) 
‣ Similar to cross-validation. 

‣ For each of 10 sets, I merge their annotations using the four different types 
(types I, II, III and IV). 

‣ For each type, compute two-way ANOVA with algorithm and sets as 
factors.



Robustness of Merged Boundaries

• Except type III none of the scores significantly vary depending on 
the set chosen.

• No conflicts in marginal means in types III and IV.



Perceptual Evaluations

‣ Two type of novel evaluations: 

‣ Metrics for multiple annotations per track. 

‣ Modifying existing metrics to align better with perception.



Music Segmentation Evaluation

‣ Standard metric: the F-measure (or F1-score):  

‣ Quantizes the similarity between the annotations and the estimated results. 

‣ Is it appropriate in the framework of music segmentation? Does it align with 
humans’ perception of the structure in music? 

‣ I aim to perceptually redefine the F-measure for evaluating music boundaries.



F-measure
‣ Find intersection between reference annotations and estimated results: 

‣ Estimated boundaries are correct (hits) if they are within 3 seconds from the 
reference one. 

‣ Precision: Ratio between hits and the total number of estimated elements. 
‣ Recall: Ratio between hits and the total number of reference elements.

‣ F-measure: Harmonic mean between P and R. 
‣ Weights both values equally. 
‣ Penalizes outliers. 
‣ Mitigates impact of large values.



F-measure for Boundary Evaluation

‣ Higher Precision represents less false positives. 

‣ Higher Recall represents less false negatives. 

‣ When listening to estimated results of music segmentation, it becomes 
apparent that these two values are perceptually very different. 

‣ Assess the relative effect that these differences have on human 
evaluations in order to redefine the F-measure. 
‣ Two Experiments



Experiments

‣ Designed to explore the preference between precision and recall. 

‣ Conducted online, with 48 and 23 participants, respectively. 

‣ Results suggest that Precision tends to be more perceptually salient than Recall: 
‣ Humans prefer to listen to “less but correct” than “more but not necessarily 

precise” boundaries.



Perceptually Redefining the  
F-measure

‣ The generic form of the F-measure is:

‣ If alpha = 1: R and P have the same weight (F1-score) 
‣ If alpha > 1: more importance to R 
‣ If alpha < 1: more importance to P

↵ < 1



Summary of Goal#2

‣ Merging annotations: 
‣ Datasets with a single human annotation per track are prone to error. 
‣ Merging multiple annotations can significantly alleviate the subjectivity effect. 

‣ Redefining existing metrics: 
‣ The F-measure could be redefined to better line up with perception. 
‣ Precision is perceptually more relevant than Recall 

‣ Including these perceptual evaluations in the MIR methodology would result in 
applications that better align with human preference.



Conclusions and Future Work
‣ Presented 4 novel methods to automatically discover structure in music. 

‣ Presented 2 novel evaluations for music segmentation that better align with human 
perception. 

‣ Narrowed the gap between Music Information Retrieval and Music Perception and 
Cognition. 

‣ Structure is regarded as hierarchical, and it is likely that future approaches to 
discover structure might output hierarchical results. 

‣ Given the ambiguity of the task, in the future algorithms may produce more than one 
“valid” answer. 

‣ Similar aggregation of annotations could also be employed in other subjective MIR 
tasks such as chords, tags, or mood.
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