
Hand Gesture Recognition in Mobile Devices:
Enhancing The Musical Experience

Oriol Nieto1? and Dennis Shasha2

1 Music And Audio Research Lab
2 Department of Computer Science

New York University
oriol@nyu.edu shasha@courant.nyu.edu

Abstract. Mobile devices typically include a built-in camera that allows
high definition video recording. This, combined with last generation mo-
bile processors, makes possible real-time computer vision that can po-
tentially enhance the interaction with various mobile applications. We
propose a system that makes use of the built-in camera to recognize and
detect different hand gestures that could be ultimately mapped to any
application. As an example, we show how the system can control real-
time music synthesis parameters, and to better capture its effectiveness
we provide links to video demos. We then show how our method is easily
extendible to other applications. We conclude the paper with qualitative
usage observations and a discussion of future plans.

Keywords: computer vision, hand recognition, mobile interface, mobile
music

1 Introduction

The advent of multitouch mobile computing devices has led to a significant
increase of the use of technology in our day to day lives. Many of these devices
include multiple cores that make the computation of real-time high definition
graphics and low latency, high quality audio feasible. Moreover, these devices
typically include a built-in high resolution camera to provide photo and video
recording to their users. One of the interesting questions that these portable
devices raise is how we can improve the interaction with them.

We propose a framework to detect hand gestures with a built-in camera in real
time. We then use these recognized gestures to control different audio synthesis
parameters enabling a naive user to play the instrument in the air. In contrast to
proposed systems [8, 13], our method identifies different hand gestures without
the need for special color marked gloves or any other type of additional hardware.
Thanks to recent technologies like, e.g. Kinect3 or Leap Motion4, high quality

? Thanks to Fundación Caja Madrid for the funding.
3 http://www.xbox.com/KINECT
4 https://www.leapmotion.com/

2 Oriol Nieto and Dennis Shasha

sensors have become widely available, so can support music and multimedia
interfaces (e.g. see [16, 12]). However, in this project we rely solely on common
portable devices.

As discussed in [2], traditional musical notions should remain in electronic
music, otherwise the audience may not properly interpret the different cues in
the audio. By having an instrument that is played similarly to a more classi-
cal Theremin [6] (i.e. by using different recognizable gestures that produce a
qualitative transformation on the audio), we would not only make spectators
appreciate the music in a desirable way, but would also provide the performer
with a portable instrument that can be easily played virtually anywhere. (see
Figure 1 for a Screenshot of our application).

Fig. 1: Screenshot of AirSynth recognizing one open hand with the detected finger tips
or convex points (in purple and orange) and finger web or defect points (in cyan).

Various hand detection algorithms have been presented in the past, mostly
under the computer vision framework [10, 18], and more recently in portable
devices5. In this project we propose to first recognize the hands using a color
filter that is set up to map the skin color (similar to [17, 4]). Then, after applying
different transformations such as blurring or high contrast, the image is treated
as a polygon, where a classic convex-hull algorithm [1] is applied. Applying a
specific heuristic algorithm, we can classify various gestures of the two hands at
a given time.

These gestures and the distance to the camera (i.e. the size of the hands)
can be used in real-time to capture different gestures as in [9]. In our music
application, this results in a synthesizer that is played solely by moving the
hands and fingers in the air (links to various video demos are available in section
3.3).

5 http://www.nanocritical.com/nanogest/, http://eyesight-tech.com/technology/, or
http://www.yonac.com/AirVox/index.html

Hand Gesture Recognition for Music in Mobile Devices 3

2 Detecting Hands

In order to make the process achievable in real-time on portable devices, the pro-
posed hand detection algorithm avoids expensive computational techniques such
as neural networks [15] or support vector machines [18] (other machine learning
techniques are described in [5, 7, 3]). Instead, the detection of the hands can be
divided into two subproblems: the acquisition of the data points representing the
defect areas (the triangular regions between the bases of pairs of fingers) for the
convex-hull of each hand, and the determination of the number of finger webs
for each hand given the triangular regions.

2.1 Defect Points Acquisition

The goal of this part of the algorithm is to obtain a set of points representing
the defect areas from an RGB image represented by a 2D matrix X. In general,
a defect area is the area between a polygon and its convex hull. A convex hull
is the smallest outer envelope that contains a specific set of points (in our case,
these points are a polygon that approximates the shape of the hand). The block
diagram of this process is depicted in Figure 2, and a visual example of it can
be seen in Figure 3.

Fig. 2: Block-diagram of the acquisition of the defect points from an RGB image.

The process starts from an RGB image X that is transformed into the Y CbCr

color space. The Y CbCr model, instead of being an additive color space like
RGB, stores a luminance value Y combined with two different color parameters:
the blue difference Cb and the red one Cr. This model makes the skin filtering

4 Oriol Nieto and Dennis Shasha

Fig. 3: Example of the acquisition of the defect points.

method more robust and easy to implement than additive/subtractive methods
such as RGB or CMYK, since the color is determined by only two values (Cb

and Cr). Generally, the only parameter that must be tuned is the luminance Y .
More information on the Y CbCr model for skin detection can be found in [11].

The next block filters out those pixels from the Y CbCr image that are not
within a set of threshold parameters that represent skin color, quantized by
the maximum and minimum values of Y , Cb and Cr. These parameters should
be tuned every time the light of the environment changes. However, since we
are using a Y CbCr model, the thresholds for Y are the only ones that will
dramatically change depending on the luminance of the room.

After that, the filtered image is blurred by an average filter. A non-linearity
of high contrast is applied in order to remove small artifacts that might appear
after the filtering. Then, the colors of the image are transformed into black and
white to be able to apply the convex-hull algorithm in a more robust way.

Fig. 4: Example of the acquisition of the defect points.

Hand Gesture Recognition for Music in Mobile Devices 5

In the following block we look for the two biggest areas in the B&W image.
These areas represent the actual hands being tracked by the camera. They are
required to be greater than a certain area threshold θ to avoid having little arti-
facts mistakingly identified as hands. In case there are two hands, we distinguish
them by checking the center of the detected areas: the left center will belong to
the left hand and the right center to the right one. If there is only one hand
facing the camera, we assume that it is the right hand, which will be useful in
order to map it to different controls as we will see in Section 3 (this could easily
be changed for left-handed users).

Once we have recognized the area of the hands, we approximate a polygon
for each hand so that we can ultimately apply a convex-hull algorithm for each
polygon. The polygon is approximated by a specified number of vertices V , using
the classic algorithm described in [14]. Then the convex-hull algorithm, initially
introduced in [1], is applied. This algorithm returns the smallest convex polygon
that envelopes the polygon representing the hand (see Figure ??). After that
we can finally obtain the defect areas, which are the triangular areas between
the convex hull and the actual polygon. This is the output of this part of the
algorithm.

2.2 Recognizing Gestures

Our proposed algorithm identifies different gestures by counting the number of
finger webs (i.e. the space in between two stretched fingers). There are five differ-
ent finger web combinations for each hand: from 0 to 4 finger webs detected. This
yields a total of 25 different possible combinations to map to various application
parameters when using both hands. On top of this, we also detect the distance
of the hands to the camera (by checking the area size), thus providing another
dimension to these 25 recognizable gestures. In this subsection we detail how to
heuristically characterize these gestures. A list of possible detected gestures for
a single hand can be seen in Figure 4.

At this point of the algorithm we have the defect areas represented by Ai =
{P i

s , P
i
e , P

i
d}, i ∈ [1, N], where P i

s , P i
e , and P i

d are the starting, ending, and
depth points of the i-th defect area respectively (note that all defect areas are
triangular, so we need only three points to represent them), and N is the number
of defect areas. We are now ready to capture different gestures in real time.

For simplicity, we assume that the finger tips are going to be facing the upper
part of the image, even though this could be easily inferred from the different
points programatically. First, for each defect area Ai, we compute the average
Euclidean distance Di between the starting and ending points to the depth point:

Di =
||P i

s − P i
d||2 + ||P i

e − P i
d||2

2
(1)

If Di is greater than a threshold value η —heuristically determined by the
area of the entire hand j—, then we might have identified the separation of two
stretched fingers (i.e. a finger web). This heuristic value is computed as follows:

6 Oriol Nieto and Dennis Shasha

ηj =

√
Hj

5
(2)

where Hj is the hand area of the j-th hand, and ηj is the threshold for this
same hand. Note that there will be a maximum of two hands at a given time,
therefore j ∈ [0, 2]. This value proved to work best in different qualitative tests
and it is highly robust to the distance of the hand to the screen.

Finally, we check that the starting and ending points (P i
s and P i

e respectively)
are under their associated depth point P i

d in the vertical dimension of the image.
Since we assume (for the sake of discussion) that the fingers will always be
facing the upper part of the image, we can easily determine whether the fingers
are being showed or not by checking the vertical dimension of these points. If
this is the case, and Di is greater than ηj , then we will have found a finger web
for the hand j. Formally:

Di > ηj ∧ yP i
dj

< yP i
sj
∧ yP i

dj

< yP i
ej

(3)

where yP i
j

is the vertical dimension (y) of the i-th point P of the j-th hand.
We do this process for each defect area of each hand.

This algorithm has been implemented in a 3rd generation Apple iPad using
the OpenCV framework6, where methods for polygon approximation and convex-
hull are available. The entire algorithm runs in real time, processing around
20 frames per second, including the audio synthesis described in the following
section.

3 Application To Music

In order to show the potential of this proposed technology, in this section we
describe a specific application to manipulate and generate audio in a digital
music instrument. The process of creating music is one of the most expressive
activities that humans can perform, and by making use of different gestures the
interaction with the device becomes more engaging, both for the player and the
listener. Moreover, having this new instrument implemented in a portable device
makes it easier to use and to perform virtually anywhere. We call this instrument
AirSynth since it can be played solely by moving the hands and fingers in the
air.

In AirSynth, each hand has a very different role: the right hand is the one
responsible to generate audio, and the left hand the one to control the other
synthesis parameters and background drones (this of course could be switched
for left-handed performers).

6 http://opencv.org/

Hand Gesture Recognition for Music in Mobile Devices 7

3.1 Right Hand

AirSynth maps the distance of the right hand to the pitch of a specific type of
wave. Thus, the interaction resembles that of a Theremin[6], where the closer
you place your hand to the device, the higher the pitch will be.

When no finger webs have been detected in the right hand (see Figure 4a),
the sinusoid is silenced. For other possible gestures (see Figures 4b–e), different
types of waves are produced: sinusoidal, saw tooth, square, and impulse train.

3.2 Left Hand

The left hand is responsible for adding different features to the sound being
produced by the right hand. It can also trigger different drone samples. The
effects we have implemented are reverb and delay, which are activated by facing
2 or 3 finger webs respectively. To do so, we have only to show these gestures
once, and these effects are activated until zero finger webs are detected. With two
finger webs detected, the pitch of the right hand will be locked to a pentatonic
scale instead of a constant glissando. Finally, to launch different samples or
drones, 4 finger webs will have to be detected during at least 1 second.

3.3 Musical Performance

The interaction with the instrument is a very expressive one, both sonically and
aesthetically. Various videos are available online7. The fact that both hands have
a relevant and distinct role when performing, that neither is touching anything,
and that the interaction is happening without noticeable delays, may make it
attractive to different performers to explore various sounds and other possible
mappings using this technology.

In a real environment of a music performance (e.g. rock concert), light is
likely to be too dim or to frequently change. In order to overcome the problem of
light adjustment, we could add a small light underneath the device to effectively
detect the hands.

4 Conclusions

We have presented a robust technology to detect different hand gestures using
an efficient algorithm that is capable of running in real-time on portable devices
with a built-in camera (e.g. smartphones, tablets). The algorithm applies various
color filters and transformations to the input video image to detect the hands and
number of separated fingers in each hand. We have presented a music instrument
that makes use of this technology (implemented in a 3rd generation Apple iPad)
to obtain an expressive and enjoyable experience for both the performer and
listener (see the provided URL in section 3.3 for video examples).

7 http://tinyurl.com/qd4f58p

8 Oriol Nieto and Dennis Shasha

References

1. A. M. Andrew. Another Efficient Algorithm For Convex Hulls in Two Dimensions.
Information Processing Letters, 9(5), 1979.

2. C. Bahn and D. Trueman. Physicality and Feedback : A Focus on the Body in the
Performance of Electronic Music. In Proc. of tICMC, pages 44–51, La Habana,
Cuba, 2001.

3. B. Caramiaux and A. Tanaka. Machine Learning of Musical Gestures. In Proc. of
NIME, Daejeon & Seoul, Korea Republic, 2013.

4. A. Elgammal, C. Muang, and D. Hu. Skin Detection - a Short Tutorial. Encyclo-
pedia of Biometrics by Springer-Verlag Berlin Heidelberg, 2009.

5. N. Gillian, R. B. Knapp, and S. O. Modhrain. A Machine Learning Toolbox For
Musician Computer Interaction. In Proc. of NIME, pages 343–348, Oslo, Norway,
2011.

6. A. Glinsky. Theremin: Ether Music and Espionage. University of Illinois Press,
2000.

7. C. Kiefer, N. Collins, and G. Fitzpatrick. Phalanger : Controlling Music Software
With Hand Movement Using A Computer Vision and Machine Learning Approach.
In Proc. of NIME, Pittsburgh, PA, USA, 2009.

8. T. Mitchell and I. Heap. SoundGrasp : A Gestural Interface for the Performance of
Live Music. In Proc. of NIME, number June, pages 465–468, Oslo, Norway, 2011.

9. T. Mitchell, S. Madgwick, and I. Heap. Musical Interaction with Hand Posture
and Orientation : A Toolbox of Gestural Control Mechanisms. In Proc. of NIME,
Ann Arbor, MI, USA, 2012.

10. A. Mittal, A. Zisserman, and P. Torr. Hand detection using multiple proposals.
In Procedings of the British Machine Vision Conference 2011, pages 75.1–75.11,
Dundee, Scotland,UK, 2011. British Machine Vision Association.

11. P. Patil and M. Patil. Robust Skin Colour Detection And Tracking Algorithm.
International Journal of Engineering Research and Technology, 1(8):1–6, 2012.

12. F. Pedersoli, N. Adami, S. Benini, and R. Leonardi. XKin - eXtendable Hand Pose
and Gesture Recognition Library for Kinect. In Proc. of the ACM International
Conference on Multimedia, pages 1465–1468, Nara, Japan, 2012.

13. B. Pritchard and S. Fels. GRASSP : Gesturally-Realized Audio , Speech and Song
Performance. In Proc. of NIME, pages 272–276, Paris, France, 2006.

14. U. Ramer. An Iterative Procedure For The Polygonal Approximation of Plane
Curves. Computer Graphics and Image Processing, 1(3):244–256, 1972.

15. E. Stergiopoulou and N. Papamarkos. Hand Gesture Recognition Using a Neural
Network Shape Fitting Technique. Engineering Applications of Artificial Intelli-
gence, 22(8):1141–1158, Dec. 2009.

16. S. Trail, T. F. Tavares, G. Odowichuk, P. Driessen, W. A. Schloss, and G. Tzane-
takis. Non-Invasive Sensing And Gesture Control For Pitched Percussion Hyper-
Instruments Using The Kinect. In Proc. of NIME, Ann Arbor, MI, USA, 2012.

17. Y. Wu, Q. Liu, and T. S. Huang. An Adaptive Self-Organizing Color Segmenta-
tion Algorithm with Application to Robust Real-time Human Hand Localization.
In Proc. of the Asian Conference on Computer Vision, pages 1106–1111, Taipei,
Taiwan, 2000.

18. B. Yao and L. Fei-Fei. Grouplet: A structured image representation for recognizing
human and object interactions. In Proc. of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 9–16, San Francisco, CA, June
2010.

