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Abstract
Various alternatives are explored for converting the Moog four-pole Voltage Controlled Filter (VCF) to
discrete-time form for digital implementation in such a way as to preserve the usefulness of its control
signals. The well known bilinear transform method yields a delay-free loop and cannot be used without
introducing an ad-hoc delay. Related methods from digital control theory yield realizable forms. New
forms motivated by root locus studies give good results.

1 Introduction

The Voltage-Controlled Filter (VCF) designed and im-
plemented by Robert Moog is an influential filter in the
history of electronic music. In this paper, the filter is an-
alyzed in continuous time and then several transforma-
tions of the filter into discrete time are analyzed for var-
ious properties such as efficiency, ease of implementa-
tion, and the retention of certain of the original filter’s
good properties, such as constant-Q, and separability of
the Q and tuning controls. The Root-Locus, a partic-
ularly useful tool from control systems, is used exten-
sively in the analysis of the VCFs.

The various transformations that turn continuous-
time filters into discrete-time filters each have differ-
ent characteristics that affect how the properties of the
continuous-time system map into the discrete domain.
Some transforms that will be studied are the backwards-
difference transform and the bilinear transform. In a fil-
ter such as the Moog VCF, a possible goal in the move to
the discrete domain is to preserve constant-Q. Under our
definition of constant-Q, a transformation cannot made
which is finite-order rational. We will see how well the
rational transforms approximate constant-Q.

In this work, Root-Locus techniques were found to be
extremely useful. The Root-Locus comes from control-
systems analysis and has particular usefulness in the
analysis of systems with sweepable control inputs (in-
puts intended to have signal-rate updates, such as audio-
rate modulation or smooth sweeps of parameters suscep-
tible to zippering). Because the amount of processing

available to translate these parameters into algorithm pa-
rameters is typically in short supply (so the algorithm
is typically designed around these parameters), the pa-
rameter usually enters into the filter’s equations simply,
maybe even linearly. The traditional Root-Locus can
plot the locations of the system’s poles with variations
in the parameter if the parameter enters in linearly, and
many techniques in control-system synthesis can be ap-
plied to the design to keep the complexity down. The
rules of how the root locus works also give the designer
new tools and hints for sweepable filter design.

2 The Moog VCF

The VCF used in Moog synthesizers employs the filter
structure shown in Fig. 1.

Σ G1(s)x(t) y(t)
-

k

G1(s) G1(s) G1(s)

Figure 1: The Moog VCF.

The transfer function of each section is

G1(s) =
1

1+ s=ωc

The four real poles at s = �ωc combine to provide a
lowpass filter with cut-off frequency (�3 dB point) at

Stilson and Smith 1 Analyzing the Moog VCF



ω = ωc. The overall transfer function with feedback as
shown is

H(s)
∆
=

Y (s)
X(s)

=
G4

1(s)

1+ kG4
1(s)

=
1

k+(1+ s=ωc)4

where g is the feedback gain which is varied between
0 and 4. Each real pole section can be implemented
as a simple (buffered) RC section. Moog implemented
the RC sections using a highly innovative discrete ana-
log circuit known as the “Moog ladder” [Moog 1965,
Hutchins 1975].

At ω = ωc, the complex gain of each pole section is

G1( jωc) =
1

1+ j
=

1p
2

e j π
4

Therefore, the gain and phase of all four sections are

G4
1( jωc) =

1
4

e jπ =
1
4
(�1)

I.e., the total gain is 1=4 and the phase is �180 degrees
(inverting). In contrast, at ω = 0, the gain is 1 and
the phase is 0 degrees (non-inverting), while at ω = ∞,
the gain is 0, and the phase is �360 degrees (also non-
inverting). In summary, the four one-pole sections com-
prise a lowpass filter with cut-off frequency ω = ωc,
which is inverting at cut-off. Therefore, the use of in-
verting feedback provides resonance at the cut-off fre-
quency. This is called “corner peaking” in analog syn-
thesizer VCF design [Hutchins 1975, p. 5d(12)]. As the
feedback gain k approaches 4, the total loop gain ap-
proaches 1, and the gain at resonance goes to infinity.
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Figure 2: Amplitude response of the analog Moog VCF for
different levels of feedback (ωc = 10rad=sec). At k = 0, the
dc gain is 1 and the filter is a lowpass without corner peak-
ing. Also shown are k = 4[0:3;0:6;0:9;0:99]. As k increases,
corner peaking develops at the cut-off frequency. At k = 4, the
lowpass filter oscillates at its cut-off frequency.

Figure 2 shows a family of frequency response func-
tions for the Moog VCF for a variety of feedback lev-
els. As the feedback gain g goes from 0 to 4, the poles of
the overall filter expand outward in an “X” pattern from
s = ωc until the two poles on the right reach the jω axis
at ω = ωc.

Lowpass Nature: Since the one-pole filters are
G1(s) =

ωc
s+ωc

, we get

H( j ω) =
ω4

c

( j ω+ωc)4 + kω4
c

so at ω � ωc, jH( jω)j � 1
1+k , and at ω � ωc,

jH( jω)j � 1
ω4 .

Root-Locus Interpretation

We can also analyze the VCF with the root-locus tech-
nique. Root Locus is a method popular in the field
of control systems analysis that gives various rules for
feedback-loop pole location movement in terms of the
open-loop transfer function and the variations of the
feedback gain. While originally intended for analysis of
control systems, there is no reason why it cannot be used
to analyze audio filters (indeed, linear control systems
are filters, just dealing with different frequency ranges).

Introduction to Root Locus

Σx(t) y(t)
-

k

G(s)

H(s)

Figure 3: A simple feedback system.

Let’s assume a system as shown in Figure 3, a simple
feedback system with the transfer function G(s) in the
forward path. We know from block-diagramalgebra that
the total (closed-loop) transfer function is:

H(s) =
G(s)

1+ kG(s)

Now, if G(s) = N(s)
D(s) , then:

H(s) =
N(s)

D(s)+ kN(s)

If G(s) is in the feedback path, then:

H(s) =
D(s)

D(s)+ kN(s)

Note that in both cases the poles are the same:

D(s)+ kN(s) = 0 (1)
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k =�D(s)
N(s)

=�G�1(s)

Since k is real and positive, we see that the total root-
locus (the locus of all points in the s-plane that are roots
of eq. 1 as k traverses [0;∞)) is all s for which 6 G(s) = π.

Two rules for root locus are immediately clear from
eq. 1: for k = 0, the roots of eq. 1 are the roots of D(s)
(the poles of G(s)); and for k! ∞, the roots of eq. 1 are
the roots of N(s) (the zeros of G(s)). Thus as k traverses
[0;∞), the closed-loop poles start at the open-loop poles
and head towards the open-loop zeros.

The rules for root locus were developed to aid in hand-
drawing the loci, and can be found in any introduc-
tory book on control systems (such as Franklin & Pow-
ell 1994)1. Although it is now trivial to use computers
to calculate root-loci via brute-force numerical root find-
ers, familiarity with the rules and the common root-locus
shapes allows one to use root-locus as a design tool.

The MoogVCF Analyzed

The Moog VCF is in the simple feedback form of Fig-
ure 3. Therefore, we can immediately draw the root lo-
cus for changes in the feedback gain.

−6 −4 −2 0

−2

0

2

Figure 4: Root-Loci for the Moog VCF, various ωc, sweeping
k 2 [0;5].

Root-Locus Rules state that the four coincident poles
of the open-loop filters break away from the real axis at
45-degree angles and head to the zeroes at infinity along
straight-line asymptotes, which in this case happen to be
the same as the break-away lines. Thus, the root locus
consists of these 45-degree lines that cross the imaginary

1The same rules apply in discrete-time filters (root-locus in z) as
in continuous-time (root-locs in s), the only difference being the pole-
location interpretation.

axis at ω = ωc, the open-loop pole location. Quick cal-
culation also shows that the feedback gain at which this
happens is k= 4. Thus one has a trivial corner-frequency
control via the pole location of the cascaded one-pole fil-
ters.

Resonance Control: One can also evaluate a root lo-
cus of the VCF with ωc, the open-loop pole location as
the free variable.2

Algebraic solution of (s+ωc)
4 + kω4

c = 0 gives

s = ωc (�1�
p
�j k1=4)

s = ωc (�1� k1=4e� jπ=4)

Which shows the 45-degree root-locus lines men-
tioned earlier. If we keep k constant, and look at the
dominant poles (the ones that approach the jω axis), we
get:

s = ae� jα;where

α =
π
2
+ tan�1

 p
2� k

1
4

k
1
4

!

−6 −4 −2 0

−2

0

2

Figure 5: Root-Locus vs. ωc, various k.

So sweeping ωc while keeping k constant gives root-
locus lines that keep a constant angle from the jω axis.
This gives the filters a constant Q across sweeps in ωc,
so that k becomes a Q control. Thus the Moog VCF has
simple, uncoupled controls of corner frequency and res-
onance.

2Unfortunately, most of the standard root-locus rules do not apply
anymore. The root-locus rules work for any system that can be put into
the form A(s)+cB(s)= 0, so that the coefficients of s in the expanded
polynomial are at most affine in c (linear plus an offset, i.e. the high-
est power of c in the polynomial is 1.). In the VCF, the above equation
is 4’th-order in ωc. Thus the root-locus can only be evaluated numer-
ically, or in simple situations, solved algebraically, since there are no
simplified rules for the patterns in this “higher-order” root locus (yet—
work is being done to this end).
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2.0.1 Definition of Q

For this paper, Q will be defined in terms of pole loca-
tion rather than the center/bandwidth definition. In par-
ticular, it will be defined according to the impulse re-
sponse of the poles (assuming dominance): “the number
of cycles for the envelope of the impulse response to de-
cay to 1=eπ”(Morse, p. 25) . With dominance, pole lo-
cation and impulse-response decay time are essentially
equivalent. When we define Q in terms of the impulse
response, we can arrive at a discrete-time definition of Q
via the impulse-invariant transform z = esT , which gives
us constant-Q pole locations as z = r e� jθ;r = e�αθ,
which are logarithmic spirals in the z-plane, and Q =
1=(2sin(tan�1(α))) (thus the Q of the pole zp is Q(zp) =
[2sin(tan�1(� ln jzpj=6 zp))]).

3 Discretizing the VCF

It is desired to create digital filters with frequency and
resonance controls as simple and efficient as those in the
analog VCF. In particular, we desire filters whose con-
trols (1) are uncoupled, (2) control useful parameters,
such as frequency and Q, and (3) are efficient to control
(not requiring expensive conversions, such as transcen-
dentals, to get from the desired parameter to the actual
control value). Filters based on the Moog VCF topology
are explored here because it is hoped that at least some
of the good features of the filter will translate well into
the digital realm.

In order to preserve controllability, the continuous-
time (CT) VCF equations must be translated to discrete-
time (DT) using some transformation of the transfer
function. as opposed to doing a impulse-response dis-
cretization, or a DT filter design based on the CT fre-
quency response, because these methods typically aren’t
parameterizable, nor do they preserve any parameteriza-
tion of the original system.

For similar reasons, the VCF’s topology (cascaded
one-pole filters with feedback around the whole loop)
will be used for the DT filters. This means that the fil-
ter equations to be transformed will be those of the one-
pole filters rather than the equations of the whole sys-
tem. This keeps the controls simple, because otherwise,
when the equations for the VCF are determined (i.e. by
multiplying out the cascaded filters and collapsing the
feedback), the resulting coefficients are no longer simple
functions of the controls (including higher powers of the
controls and divisions involving the coefficients), which
destroys the efficiency of the controls.

Some popular transforms are the Backward-
Difference Transform, the Bilinear Transform, and the

Pole/Zero Mapping. These techniques accomplish the
transform by applying some mapping to convert from
the CT variable s to the DT variable z. The backward-
difference mapping is s (1+ z�1)=T = (z�1)=(z T ),
(T is the sampling period); the bilinear transform is
s  2(z� 1)=(z + 1)T ; and the pole/zero mapping is
z esT for the poles3[Franklin & Powell 1990, Ch. 4].

The pole/zero mapping can’t be used as a direct sub-
stitution for s into transfer functions, because the re-
sulting equation in z is non-rational and thus not imple-
mentable. It can be used, however, to guide the design
of an equivalent DT filter, with the poles and zeros in the
positions described by the z esT mapping. This can,
still, increase the complexity of a design (and decrease
the efficiency) because complex exponentials (or at least
transcendentals) can easily crop up in the control equa-
tions of the new system.

Implementability:
An unfortunate fact in the discretization of the VCF

topology is that most of the above-mentioned transforms
will produce one-pole filters that have a delay-free path
from input to output. That means when they are placed
in the feedback loop, the system is unrealizable4. Thus
the systems must be modified to make them realizable,
typically by adding a unit delay into the loop. Unfortu-
nately, this addition interferes with many of the features
of the filters, including, most notably, causing the con-
trols to no longer be uncoupled.

Therefore, a major part of the design process is find-
ing transforms (or directly designing DT systems in the
Moog VCF topology) that minimize the distortions re-
quired in the realizations.

Bilinear Transform

The bilinearly transformed onepole s
s+a is:

G1(z) =
1
2
(p+1)

z+1
z+ p

(Bilinear)

where

p =
a�2
a+2

so that

G(z) =

�
0:5 (p+1)(z+1)

(z+ p)

�4

and

3And the finite zeros, with all but one of the zeros at infinity being
placed at z =�1.

4unless the feedback loop is collapsed with block-diagram algebra,
but as mentioned earlier, this destroys the efficiency of the control.
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Figure 6: The Complete Root Locus for a given p, bilinearly-
transformed VCF.

H(z) =
G(z)

1+ kz�1G(z)

G(z) has a delay-free path, so to implement this, a unit
delay has been added to the loop. This kills the uncou-
pled nature of p and k for frequency and resonance con-
trol, see Figure 7 (If the controls were uncoupled, the
curves would be horizontal).

We can see from the Figure 7 that k must be kept be-
low 1.0 if one wants to sweep the whole range of p while
keeping k constant yet stay stable at the high frequen-
cies. Unfortunately, this causes the Q at low frequencies
to be quite low. The current fix for the coupled controls
is to use a “separation” table to scale the feedback gain
as function of the pole location p:

kactual = kdesiredTable(p)

Where Table(p) is given by the top trace of Figure 7,
and kdesired 2 [0;1).

The lower traces in Figure 7 are not simple scalings
of the top trace, but the are rather close. This causes
the Q along a given sweep of p to rise at very high fre-
quencies, making this not exactly a constant-Q sweep-
able filter (see Figure 16). This inaccuracy is considered
tolerable because it only becomes major for corner fre-
quencies in the top octave, which are typically unused at
fs = 44:1 kHz, and if used, typically only for special ef-
fects, where total accuracy is not completely necessary.

To get exact constant-Q sweeps, table(p) would also
have to be a function of Q, which vastly increases the
storage requirements for the table.

Another table lookup must also me done if exact tun-
ing is deemed necessary (Figure 8). Note that at low fre-
quencies, the tuning curve is almost linear, so may be
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Figure 7: Feedback gains vs. p to get various Q, Bilinear
case.
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Figure 8: Tuning curve at infinite Q,Bilinear.

unnecessary. The use of tuning tables is often less of a
problem for efficiency because in many cases exact tun-
ing is needed at slower rates, such as only at the begin-
ning and end of sweeps.

PZMap Onepole Placement

This case acts almost the same as the bilinear case, but
it achieves realizability by removing one of the zeros at
z = �1 instead of adding the unit delay (which puts a
pole at z = 0). Otherwise it acts similarly, so will not be
considered further.

Backward Difference Transform

The backward-difference transformed onepole s
s+a is:

G1(z) = (p+1)
z

z+ p
(Back-Diff)

where

p = a+1

so that
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Figure 9: Feedback gains for various Q, Back-Diff.

G(z) =

�
(p+1) z
(z+ p)

�4

Again, this requires an extra delay in the loop to be-
come implementable, And, as in the bilinear case, a table
is required for separability. This filter, however, can be
used without a separation table with better results than in
the bilinear case because, as we can see from Figure 9,
the Q falls as p increases, for a given k. This allows the
user to sweep p without worrying about stability as long
as the Q at low frequencies is desirable. For many effects
where exact Q isn’t necessary, the variation in Q vs. p
that this filter presents (Figure 17) may be acceptable.

If more closely constant Q is required, then the tech-
niques described for the bilinear case (the use of a sepa-
ration table) apply with similar results, although this fil-
ter may be able to be implemented slightly more effi-
ciently because of numerator of the onepole is simpler
(typically this affects the total system efficiency only
slightly, since the bilinear case can be implemented very
efficiently.)
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Figure 10: Tuning curve at infinite Q, Back-Diff.

The tuning curve is more drastic (Figure 10) than in

the bilinear case, which makes the use of a tuning table
more necessary in practice.

‘Compromise’ Version
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Figure 11: Feedback gains for various Q, Compromise.
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Figure 12: Tuning curve at infinite Q, Compromise.

The reader may have noticed that the gain curves for the
two preceding cases have nearly opposite behaviors (for
the bilinear, Q goes up with p when not using a sepa-
ration table, and for the backwards difference, it goes
down). The big difference between these two architec-
turally is the placement of the one-pole filters’ zeros: the
bilinear case places them at z =�1, and the backwards
difference places them at z = 0. This suggests finding an
intermediate position that may flatten out the gain curves
and give p-sweeps more close to constant-Q.

A few eyeballed tries gave a zero position of z=�0:3:

G1(z) =
(p+1)

1:3
z+0:3
z+ p

(Compromise)

G(z) =

�
(p+1)(z+0:3)

1:3 (z+ p)

�4

Again, a delay is put in the loop.
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Referring to Figure 11 and Figure 18, we see that in
the frequency range [0; fs=4] and for Q up to about 100,
the filter is quite close to constant-Q and the controls p
and k are almost uncoupled controls of frequency and Q,
without the use of a separation table, although a tuning
table may be necessary, as in all these cases.

An optimization could be performed to arrive at the
“best” zero location, maybe even optimizing the four ze-
ros to different locations.

Thoughts on Exact Constant-Q: It is likely that the
auditory system is not extremely sensitive to variations in
Q (i.e. the JND is probably large). Unfortunately I don’t
have any references on the subject other than a mention
of a study on speech formant-width sensitivty [Smith86,
p. 130]. If true, and if a number for JND (such as per-
centage) were found, then it would tell us how close to
constant-Q we need to get in filters that don’t exactly fol-
low constant-Q sweeps, such as all the ones mentioned
above. It would also help in the design of stopping con-
ditions for optimization procedures that may be used to
design or tweak these kinds of filters. It is likely that
there is quite a bit of leeway in the variation of Q with
corner frequency that we can tolerate.

On the other hand, JNDs for amplitude are quite
small, and since messing with Q usually messes with
amplitude (or loudness), this might place a tighter con-
dition on Q. What we really need is a JND for resonance
amplitude variation across corner frequency sweeps.

Comparisons

Root Loci: The Root Loci for the above-mentioned fil-
ters (Figures 13-15) are quite informative. These plots
show dominant-pole locations versus sweeps of p and k
(in the bilinear case, k is scaled with the separation ta-
ble). Constant-Q pole locations are shown on the z-plane
grid, so we can see how the filters deviate from constant-
Q (at least at high frequencies). The loci also show how
the tuning acts versus p.

Note that in all cases, k = 0 gives the positive real
axis. Also note how the use of a separation table (Fig-
ure 13) guarantees stability, at the expense of the extra
table lookup.

Constancy of Q: These plots (Figures 16-18) show
the frequency ranges and Q ranges over which the fil-
ters approximate constant-Q (again, this is based on the
location of the dominant poles). These show the Q as
p varies, with k held constant at various values (except
in the bilinear case, where the separation table is used5).

5Again, separation tables would also work in the other cases to get
better curves, but the intention is to find filters for which the use of a
separation table is unnecessary. It is necessary in the bilinear case for

Figure 13: Dominant pole locations for p and k sweeps,
Bilinear with separation table.

Figure 14: Dominant pole locations for p and k sweeps,
Back-Diff, no separation table.

This type of plot is one of the more useful pieces of in-
formation when designing VCFs that are intended to be
constant-Q.

Bode Plots: A complete set of Bode plots would take
up much too much space, so instead a single p sweep
is shown for each filter, with k held constant (with sep-
aration table in Bilinear case) at a value that gives a
medium Q (Figures 19-21).

Oversampling: Another way to approach constant-
Q is to oversample. Almost all filters of this type can be
tweaked to act very well over a small frequency range.
Oversampling reduces the range of desired frequencies
significantly, thus making the VCF design problem eas-
ier. This is also understandable from the viewpoint that

stability reasons.
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Figure 15: Dominant pole locations for p and k sweeps,
Compromise, no separation table.
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Figure 16: Q vs. corner freq. for various (pre-scaling) k,
Bilinear with separation table.

highly oversampled systems are better approximations
of continuous-time systems, because the region about
z = 1 can be linearized down to a rectangular coordinate
system (just like the CT coordinates) by the approxima-
tions

r sin(θ) θ!0�! r θ

r cos(θ) θ!0�! r

furthermore, for r � 1,

r sin(θ) θ!0�! θ

r cos(θ) θ!0�! r
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Figure 17: Q vs. corner freq. for various k, Back-Diff, no
separation table.
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Figure 18: Q vs. corner freq. for various k, Compromise, no
separation table.

On the other hand, oversampling is less efficient. For
an oversampling factor of M, the oversampled filter is M
times more expensive. This may be useful, however, if
because of the oversampling, the cost of the filter can
be significantly reduced (cf. the above argument that
the design is simpler). Oversampling can also aggra-
vate certain numerical errors, such as coefficient round-
off, because all the poles become bunched up around
z = 1, which increases sensitivity to the coefficient er-
rors (Franklin & Powell 1990, p. 339)

Constant-Q Filters, Algebraic Derivation

If efficiency is not a problem, we can directly write the
equations for the denominator of the desired filter:

2 poles:
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Figure 19: Bode plots, constant pre-scaling k (medium Q),
various p, Bilinear with separation table.
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Figure 20: Bode plots, constant k (medium Q), various p,
Back-Diff, no separation table.

(z� e�αθe� jθ)(z� e�αθe jθ)

4 poles:

(z� e�αθe� jθ)(z� e�αθe jθ)(z�a)(z�b)

In the four-pole case, the placement of the other two
poles is a matter of design. If we compare with the root-
locus of the bilinear case (Figure 6), which has the other
two poles somewhere closer to the origin, it may be that
some good choices for the other poles are: (1) both at
z = 0, (2) same angle as the main poles, but with a re-
duced radius, (3) same angle, lower Q, or (4) at the same
positions as the main poles (so they become repeated).

Multiplied out, the two-pole denominator is:

z2 +2e�αθ cos(θ)z+ e�2αθ

As a first pass at making this efficient, we could use
table lookups for the exponent and cosine, making for
2 table lookups (probably interpolated) and 2 multiplies
for each new pole location.

A further efficiency increase comes in constant-rate
frequency sweeps, where the update rate is constant.
This satisfies the equation:

e�αθ(t) = e�α(a+bt) = e�αae�αbt

at t = t0 +∆t,

e�αθ(t0+∆t) = e�αae�αbt0e�αb ∆t
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Figure 21: Bode plots, constant k (medium Q), various p,
Compromise, no separation table.

So that at the denominator is:

z2 + e1(t)cos(θ(t))z+ e2(t)

where

e1(t +∆t) = e1(t)δe1

e2(t +∆t) = e2(t)δe2 or e1(t +∆t)2

and

δe1 = e�αb ∆t

δe2 = δe
2
1

δe1 need only be evaluated at the beginning of the
sweep, thus we get rid of one table lookup per ∆t. This
technique can be used to smooth low-rate θ updates. If
necessary, this method can also be used on α sweeps (or
both).

4 Root-Locus Filters

Other patterns that show up in root-locus analysis can
also be used to create useful sweepable filters. In partic-
ular, we can directly look for patterns that are useful for
digital filters, rather than finding useful continuous-time
patterns and then transforming the filters to discrete-
time. We can call filters designed this way “Discrete-
Time Root-Locus Filters”6.

A common pattern in root-loci is a circle surround-
ing a zero. Circles are particularly interesting from a
discrete-time perspective because of the region of stabil-
ity in z, which is also a circle.

The Two-Pole Constant-Bandwidth Root-
Locus Filter

By placing an open-loop zero on the origin, and two
poles on the positive real line (so, using the notation of

6By analogy, the Moog VCF is a Continuous-Time Root-Locus
Filter
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Figure 3, G(s) = z=(z� a)(z� b)), we can get a root-
locus (in k) that is a circle centered on the origin with
a radius that is the geometric average of the pole loca-
tions. A particularly simple choice of pole locations is
therefore to put them both on the desired radius: G(s) =
z=(z� r)2 (Figure 22).

Figure 22: Root locus of this 2-pole RL Filter, r = 0:8.

We thus have two trivial controls: (1) k controls pole
angle (corner frequency), and (2) the open-loop pole lo-
cation controls the pole radius. Because the root locus is
a perfect circle (this can be easily shown), the radius is
constant over all frequencies (to the limits of the number
system), so stability is not a problem. The controls are
also completely uncoupled. frequency is related to k as
k = 2r(1� cos(θ)), and radius as r = (pole location).

This filter is not necessarily any more efficient than a
direct-form filter ( denom = z2 + 2rcz+ r2), which also
has uncoupled radius and angle controls with θ related
to c as c = cos(θ) — essentially the same control com-
plexity. It may, however, have different numerical prop-
erties.

Root-Locus Filters Approximating
Constant-Q

It is commonly held that constant-bandwidth filters are
less useful than constant-Q filters. We can therefore
modify the above root-locus filter to try to approximate
constant-Q. The first pass is to note that at large Q,
the constant-Q root trajectories look visually like circles,
and shift the root- locus circle over to touch the unit cir-
cle at z = 1, like the constant-Q tracks do. This would
give a pseudo-Q control with the open-loop zero loca-
tion (G(s) = (z�c)=(z�1)2), with zero locations nearer
z = 0 giving higher average Q (here the open-loop poles

would be fixed at z = 1). Unfortunately, root-locus rules
state that the root-locus tracks must leave the real axis
at �90�,7 so that at low frequencies, Q! ∞, no matter
where the zero is (see Figure 23).
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Figure 23: Q vs. angle, various zero locations.

The next modification would be to move the open-
loop poles in from z = 1, so that Q doesn’t go to ∞ at
DC (G(s) = (z� c)(z� (1� ε))2). This causes Q to go
to zero at DC, rise quickly at low frequencies, and then
settle in to the same pattern as above at high frequencies
(see Figure 24).
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Figure 24: Q vs. angle, various zero locations.

Further flattening of Q can be achieved by adding
pole/zero pairs inside the unit circle. This technique,
well known in control-systems design, is used to locally
warp the root locus. A pole/zero pair has a large effect

7the actual constant-Q tracks leave z = 1 at angles greater than
�90�
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on 6 G(z) near the pair (remember, the root-locus is all
z for which 6 G(z) = π), but away from the pair, they
cancel each other and have little effect on the root lo-
cus. One can control the effects of the pair by control-
ling their separation and distance from the locus (close
together ) more localized effect ) most be closer to
locus, but has stronger effect because of proximity to lo-
cus; further apart)more widespread, but weaker effect
due to usually being placed further from the locus).

A quick design using this effect is shown in Figure 25,
its root locus is shown in Figure 26. By adding pole/zero
pairs and shifting the main open-loop pairs, one can fol-
low an ad-hoc optimization path and minimize the de-
viation from some desired Q. The filter shown was de-
signed by eyeballed trial-and-error8, but an optimization
procedure could be designed.
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Figure 25: Q vs. angle, eyeballed minimum-Q-error filter.

Figure 26: root locus, eyeballed minimum-Q-error filter.

Unfortunately, this technique doesn’t easily lend itself
to parameterizing Q, because a new optimization may

8The pole/zero pairs were on the real axis to make things easier:
poles at z = [:5 :9 :97 :9975 1 1], zeros at z = [:1 :55 :92 :975 :9983].
This particular Q� 5 is admittedly an easy design compared to a very
high Q, but it serves as an example of the idea.

need to be done for each Q (although a pattern could de-
velop upon which a parameterization could be based).
Also, it is likely not very efficient, due to the number of
pole/zero pairs greatly increasing the order of the sys-
tem.

5 Conclusion

Implementability issues make the conversion of the
Moog VCF to a digital form nontrivial. Once converted
using standard techniques, the filter must be tweaked
to recover some of the original features. Some trans-
forms preserve features better than others, but best re-
sults come from redesigning the filter directly in the
discrete domain. Methods from control-systems theory
prove useful in this redesign. These methods also sug-
gest new topologies that prove interesting.
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