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Abstract

Various aternatives are explored for converting the Moog four-pole Voltage Controlled Filter (VCF) to
discrete-time form for digital implementation in such away as to preserve the usefulness of its control
signals. The well known bilinear transform method yields a delay-free loop and cannot be used without
introducing an ad-hoc delay. Related methods from digital control theory yield realizable forms. New
forms motivated by root locus studies give good results.

1 Introduction

The Voltage-Controlled Filter (VCF) designed and im-
plemented by Robert Moog is an influential filter in the
history of electronic music. Inthis paper, thefilter isan-
alyzed in continuous time and then several transforma-
tions of thefilter into discrete time are analyzed for var-
ious properties such as efficiency, ease of implementa-
tion, and the retention of certain of the origina filter's
good properties, such as constant-Q, and separability of
the Q and tuning controls. The Root-Locus, a partic-
ularly useful tool from control systems, is used exten-
sively in the analysis of the VCFs.

The various transformations that turn continuous-
time filters into discrete-time filters each have differ-
ent characteristics that affect how the properties of the
continuous-time system map into the discrete domain.
Some transformsthat will be studied are the backwards-
differencetransform and the bilinear transform. In afil-
ter such asthe Moog V CF, apossible goal inthe moveto
the discrete domainisto preserve constant-Q. Under our
definition of constant-Q, a transformation cannot made
which isfinite-order rational. We will see how well the
rational transforms approximate constant-Q.

Inthiswork, Root-L ocustechniqueswerefound to be
extremely useful. The Root-L ocus comes from control-
systems analysis and has particular usefulness in the
analysis of systems with sweepable control inputs (in-
putsintended to have signal-rate updates, such as audio-
rate modul ation or smooth sweeps of parameters suscep-
tible to zippering). Because the amount of processing
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availableto trand ate these parametersinto algorithm pa-
rameters is typically in short supply (so the algorithm
is typically designed around these parameters), the pa-
rameter usually entersinto the filter's equations simply,
maybe even linearly. The traditional Root-Locus can
plot the locations of the system’s poles with variations
in the parameter if the parameter entersin linearly, and
many techniquesin control-system synthesis can be ap-
plied to the design to keep the complexity down. The
rules of how the root locus works also give the designer
new tools and hints for sweepable filter design.

2 TheMoogVCF

The VCF used in Moog synthesizers employs the filter
structure shown in Fig. 1.

X(t)

Figure 1: The Moog VCF.

The transfer function of each sectionis

1

G109 = oo

The four real poles at s = —w combine to provide a
lowpass filter with cut-off frequency (—3 dB point) at
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w = wx. Theoveral transfer function with feedback as
shownis

H(s)

s Y _ Gils _ 1
T X(s) T 1+kGXs)  k+(1+s/ax)?

where g is the feedback gain which is varied between
0 and 4. Each rea pole section can be implemented
as a simple (buffered) RC section. Moog implemented
the RC sections using a highly innovative discrete ana-
log circuit known as the “Moog ladder” [Moog 1965,
Hutchins 1975].

At w = W, the complex gain of each pole sectionis

1 J'T[
—e'1

Therefore, the gain and phase of all four sections are

. 1, 1
Gi(ju) = 7€ =Z(-1)

|.e., thetotal gainis1/4 and the phase is —180 degrees
(inverting). In contrast, a w = 0O, the gain is 1 and
the phase is O degrees (non-inverting), while at w = oo,
the gainis O, and the phase is —360 degrees (also non-
inverting). In summary, the four one-pol e sections com-
prise a lowpass filter with cut-off frequency w = w,
which isinverting at cut-off. Therefore, the use of in-
verting feedback provides resonance at the cut-off fre-
guency. Thisis called “corner peaking” in analog syn-
thesizer VCF design [Hutchins 1975, p. 5d(12)]. Asthe
feedback gain k approaches 4, the total loop gain ap-
proaches 1, and the gain at resonance goes to infinity.

Ga(jox)

Gain dB

1

0 2
10 10 10

Frequency (rad/sec)

Figure 2: Amplitude response of the analog Moog VCF for
different levels of feedback (w; = 10rad/sec). Atk = 0, the
dc gain is 1 and the filter is a lowpass without corner peak-
ing. Also shown are k = 4{0.3,0.6,0.9,0.99]. Ask increases,
corner peaking devel ops at the cut-off frequency. At k = 4, the
lowpass filter oscillates at its cut-off frequency.

Figure 2 shows a family of frequency response func-
tions for the Moog VCF for a variety of feedback lev-
els. Asthefeedback gain g goesfrom 0to 4, the polesof
the overall filter expand outward in an“ X" pattern from
s = w until the two poles on theright reach the jw axis
at w= w.
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Lowpass Nature: Since the one-pole filters are

Gi(S) = sy, We get
4
H(jw) = at

(j w+ wx)* + kag

0 aw<K w H(jw| ~
H(jo)| % G-

1
TR and a W > oy,

Root-L ocus I nterpretation

We can aso analyze the VCF with the root-locus tech-
nique. Root Locus is a method popular in the field
of control systems analysis that gives various rules for
feedback-loop pole location movement in terms of the
open-loop transfer function and the variations of the
feedback gain. While originally intended for analysis of
control systems, thereis no reason why it cannot be used
to analyze audio filters (indeed, linear control systems
arefilters, just dealing with different frequency ranges).

Introduction to Root L ocus

H(s)

— A

G(s) y(t)
K

Figure3: A simple feedback system.

X(t)

Let's assume a system as shown in Figure 3, asimple
feedback system with the transfer function G(s) in the
forward path. We know from bl ock-diagramalgebrathat
the total (closed-loop) transfer functioniis:

_ Gl
H = 16E
Now, if G(s) = b3, then:
_ N
HE = 59+ /NG
If G(s) isin the feedback path, then:

_ D¢
HE = e+ NE
Note that in both cases the poles are the same:
D(s) +kN(s)=0 (1)
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D(s) :
k= NG G (s

Sincek isreal and positive, we see that the total root-
locus (the locus of all pointsin the s-planethat are roots
of eq. lasktraverses[0,)) isall sforwhich /G(s) =Tt

Two rules for root locus are immediately clear from
eg. 1: for k=0, the roots of eg. 1 are the roots of D(s)
(the poles of G(s)); and for k — oo, theroots of eq. 1 are
therootsof N(s) (the zerosof G(s)). Thusask traverses
[0, ), the closed-loop poles start at the open-loop poles
and head towards the open-loop zeros.

Therulesfor root locuswere developed to aid in hand-
drawing the loci, and can be found in any introduc-
tory book on control systems (such as Franklin & Pow-
ell 1994)%. Although it is now trivial to use computers
to calculateroot-loci viabrute-forcenumerical root find-
ers, familiarity with therulesand the common root-locus
shapes allows one to use root-locus as a design tool.

The MoogV CF Analyzed

The Moog VCF isin the simple feedback form of Fig-
ure 3. Therefore, we can immediately draw the root lo-
cus for changesin the feedback gain.

-6 -4 -2 0

Figure 4: Root-Loci for the Moog VCF, various w, sweeping
k€ [0,5].

Root-L ocus Rules state that the four coincident poles
of the open-loop filters break away from the real axis at
45-degree angles and head to the zeroes at infinity along
straight-line asymptotes, which in this case happento be
the same as the break-away lines. Thus, the root locus
consistsof these 45-degreelinesthat crosstheimaginary

1The same rules apply in discrete-time filters (root-locus in 2) as
in continuous-time (root-locs in s), the only difference being the pole-
location interpretation.
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axis at w = wy, the open-loop pole location. Quick cal-
culation also shows that the feedback gain at which this
happensisk = 4. Thusonehasatrivial corner-frequency
control viathe polelocation of the cascaded one-polefil-
ters.

Resonance Control: One can aso evaluatearoot lo-
cus of the VCF with , the open-loop pole location as
the free variable.?

Algebraic solution of (s+ wx)? + kat = 0 gives

s = W (—14 /%] kY4
s = G (—1+kY4eHv4)

Which shows the 45-degree root-locus lines men-
tioned earlier. If we keep k constant, and look at the
dominant poles (the ones that approach the jw axis), we
get:

= aetl% where

1
LI (ﬂ)
2 ka

Figure 5: Root-Locus vs. G, various k.

So sweeping w While keeping k constant gives root-
locus lines that keep a constant angle from the jw axis.
This gives the filters a constant Q across sweeps in .,
so that k becomes a Q control. Thusthe Moog V CF has
simple, uncoupled controls of corner frequency and res-
onance.

2Unfortunately, most of the standard root-locus rules do not apply
anymore. Theroot-locus ruleswork for any system that can be put into
the form A(s) + cB(s) = 0, so that the coefficients of sin the expanded
polynomia are at most affinein c (linear plus an offset, i.e. the high-
est power of cin the polynomial is1.). Inthe VCF, the above eguation
is4’th-order in w. Thus the root-locus can only be evaluated numer-
icaly, or in simple situations, solved algebraically, since there are no
simplified rulesfor the patternsin this* higher-order” root locus (yet—
work is being done to this end).
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2.0.1 Definition of Q

For this paper, Q will be defined in terms of pole loca-
tion rather than the center/bandwidth definition. In par-
ticular, it will be defined according to the impulse re-
sponse of the poles (assuming dominance): “the number
of cyclesfor the envel ope of the impul se responseto de-
cay to 1/e™(Morse, p. 25) . With dominance, pole lo-
cation and impul se-response decay time are essentially
equivalent. When we define Q in terms of the impulse
response, we can arrive at adiscrete-time definition of Q
viatheimpulse-invariant transformz= €7, which gives
us constant-Q pole locationsas z =r et r = ¢ 98,
which are logarithmic spirals in the z-plane, and Q =
1/(2sin(tan?(a))) (thusthe Q of the pole z, isQ(zp) =
[2sin(tan*(—In|zp/ £2p))]).

3 Discretizing the VCF

It is desired to create digital filters with frequency and
resonance controlsas simple and efficient asthosein the
analog VCF. In particular, we desire filters whose con-
trols (1) are uncoupled, (2) control useful parameters,
such as frequency and Q, and (3) are efficient to control
(not requiring expensive conversions, such as transcen-
dentals, to get from the desired parameter to the actual
control value). Filtersbased onthe Moog V CF topol ogy
are explored here because it is hoped that at least some
of the good features of the filter will trandate well into
the digital realm.

In order to preserve controllability, the continuous-
time (CT) VCF equations must be translated to discrete-
time (DT) using some transformation of the transfer
function. as opposed to doing a impulse-response dis-
cretization, or a DT filter design based on the CT fre-
guency response, because these methodstypically aren’t
parameterizable, nor do they preserve any parameteriza-
tion of the original system.

For similar reasons, the VCF's topology (cascaded
one-pole filters with feedback around the whole loop)
will be used for the DT filters. This means that the fil-
ter equationsto be transformed will be those of the one-
pole filters rather than the equations of the whole sys-
tem. This keepsthe controls simple, because otherwise,
when the equations for the VCF are determined (i.e. by
multiplying out the cascaded filters and collapsing the
feedback), theresulting coefficientsareno longer simple
functionsof the controls (including higher powersof the
controls and divisionsinvolving the coefficients), which
destroys the efficiency of the controls.

Some popular transforms are the Backward-
Difference Transform, the Bilinear Transform, and the
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Pole/Zero Mapping. These techniques accomplish the
transform by applying some mapping to convert from
the CT variable sto the DT variable z. The backward-
differencemappingiss+« (1+z%)/T = (z—1)/(zT),
(T is the sampling period); the bilinear transform is
S« 2(z—1)/(z+ 1)T; and the pole/zero mapping is
z+ € for the poles®[Franklin & Powell 1990, Ch. 4].

The pole/zero mapping can’t be used as a direct sub-
gtitution for s into transfer functions, because the re-
sulting equation in z is non-rational and thus not imple-
mentable. It can be used, however, to guide the design
of an equivalent DT filter, with the polesand zerosin the
positions described by the z <— €57 mapping. This can,
still, increase the complexity of a design (and decrease
the efficiency) because complex exponentials (or at least
transcendentals) can easily crop up in the control equa-
tions of the new system.

I mplementability:

An unfortunate fact in the discretization of the VCF
topol ogy isthat most of the above-mentionedtransforms
will produce one-polefilters that have a delay-free path
from input to output. That means when they are placed
in the feedback loop, the system is unrealizable®. Thus
the systems must be modified to make them realizable,
typically by adding a unit delay into the loop. Unfortu-
nately, this addition interferes with many of the features
of the filters, including, most notably, causing the con-
trolsto no longer be uncoupled.

Therefore, amajor part of the design processiis find-
ing transforms (or directly designing DT systemsin the
Moog VCF topology) that minimize the distortions re-
quired in the redlizations.

Bilinear Transform

The bilinearly transformed onepole 575 is:

Gi(2) = %(p+1)m (Bilinear)
where
_a-2
P~ a2
so that
6 - (0.5(p+1)(z+1)>4
(z+p)
and

3And the finite zeros, with al but one of the zeros at infinity being
placed at z= —1.

“4unlessthe feedback loop is collapsed with block-diagram algebra,
but as mentioned earlier, this destroys the efficiency of the contral.
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Figure 6: The Complete Root Locus for a given p, hilinearly-
transformed VCF.

_ G
H@ = Tei6

G(2z) hasadelay-freepath, so toimplement this, aunit
delay has been added to the loop. This kills the uncou-
pled nature of p and k for frequency and resonance con-
trol, see Figure 7 (If the controls were uncoupled, the
curveswould be horizontal).

We can see from the Figure 7 that k must be kept be-
low 1.0if onewantsto sweep thewholerangeof pwhile
keeping k constant yet stay stable at the high frequen-
cies. Unfortunately, this causesthe Q at low frequencies
to be quite low. The current fix for the coupled controls
isto use a“separation” table to scale the feedback gain
as function of the pole location p:

kmual = kde;'redTabIe( p)

Where Table(p) is given by the top trace of Figure 7,
and Ko € [0, 1).

The lower traces in Figure 7 are not simple scalings
of the top trace, but the are rather close. This causes
the Q along a given sweep of p to rise at very high fre-
guencies, making this not exactly a constant-Q sweep-
ablefilter (see Figure 16). Thisinaccuracy isconsidered
tolerable because it only becomes major for corner fre-
guenciesin thetop octave, which aretypically unused at
fs = 44.1 kHz, and if used, typically only for special ef-
fects, where total accuracy is not completely necessary.

To get exact constant-Q sweeps, table(p) would also
have to be a function of Q, which vastly increases the
storage requirements for the table.

Another table lookup must also me done if exact tun-
ing isdeemed necessary (Figure 8). Notethat at low fre-
guencies, the tuning curve is amost linear, so may be
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0.5 1

Figure 7: Feedback gainsvs. p to get various Q, Bilinear
case.

freq (theta)
=
N

-1 -0.5 0 0.5 1
p

Figure 8: Tuning curve at infinite Q,Bilinear.

unnecessary. The use of tuning tables is often less of a
problem for efficiency becausein many cases exact tun-
ing is needed at dower rates, such as only at the begin-
ning and end of sweeps.

PZMap Onepole Placement

This case acts amost the same as the bilinear case, but
it achieves realizability by removing one of the zeros at
z= —1instead of adding the unit delay (which puts a
poleat z= 0). Otherwiseit acts similarly, so will not be
considered further.

Backward Difference Transform

The backward-difference transformed onepole % is:

z
Gl(z) = (FH- 1)m (Back-Diff)
where

p=a+1
so that
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gain (k)

Figure 9: Feedback gains for various Q, Back-Diff.

G2 = ((p+1)z>4

(z+p)

Again, this requires an extra delay in the loop to be-
comeimplementable, And, asinthebilinear case, atable
isrequired for separability. Thisfilter, however, can be
used without a separation tablewith better resultsthanin
the bilinear case because, as we can see from Figure 9,
the Q falls as p increases, for agiven k. Thisalowsthe
user to sweep p without worrying about stability aslong
astheQ at low frequenciesisdesirable. For many effects
where exact Q isn't necessary, the variationin Q vs. p
that thisfilter presents (Figure 17) may be acceptable.

If more closely constant Q is required, then the tech-
nigques described for the bilinear case (the use of a sepa-
ration table) apply with similar results, although thisfil-
ter may be able to be implemented slightly more effi-
ciently because of numerator of the onepoleis simpler
(typicaly this affects the total system efficiency only
dlightly, sincethe bilinear case can beimplemented very
efficiently.)

pi

freq (theta)
=3
N

-0.33

-0.5

-1 -0.75
p

Figure 10: Tuning curve at infinite Q, Back-Diff.

The tuning curve is more drastic (Figure 10) than in
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the hilinear case, which makes the use of atuning table
more necessary in practice.

‘Compromise’ Version

0
-1 -0.75 -0.5 -0.25 0 0.16

p

Figure 11: Feedback gains for various Q, Compromise.

pi

freq (theta)
.
N

91 -0.75 -0.5 -0.25 0 0.16

Figure 12: Tuning curve at infinite Q, Compromise.

The reader may have noticed that the gain curvesfor the
two preceding cases have nearly opposite behaviors (for
the bilinear, Q goes up with p when not using a sepa-
ration table, and for the backwards difference, it goes
down). The big difference between these two architec-
turally isthe placement of theone-polefilters’ zeros: the
bilinear case placesthem at z= —1, and the backwards
differenceplacesthemat z= 0. Thissuggestsfinding an
intermediate position that may flatten out the gain curves
and give p-sweeps more close to constant-Q.

A few eyeballedtriesgaveazeropositionof z= —0.3:

_ (p+1)z+03 ,
Gi(2) = 13 z7p (Compromise)
_ ((p+D)(z+03)\*
G2 = < 13(z+p) )

Again, adelay is put in the loop.
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Referring to Figure 11 and Figure 18, we see that in
the frequency range [0, fs/4] and for Q up to about 100,
thefilter is quite close to constant-Q and the controls p
and k are almost uncoupl ed control s of frequency and Q,
without the use of a separation table, although atuning
table may be necessary, asin al these cases.

An optimization could be performed to arrive at the
“best” zero location, maybe even optimizing the four ze-
rosto different locations.

Thoughts on Exact Constant-Q: It islikely that the
auditory systemisnot extremely sensitiveto variationsin
Q (i.e. the IND isprobably large). Unfortunately | don’t
have any references on the subject other than a mention
of astudy on speech formant-width sensitivty [ Smith86,
p. 130]. If true, and if a number for IND (such as per-
centage) were found, then it would tell us how close to
constant-Qwe needto get infiltersthat don’t exactly fol-
low constant-Q sweeps, such as all the ones mentioned
above. It would aso help in the design of stopping con-
ditions for optimization proceduresthat may be used to
design or tweak these kinds of filters. It is likely that
there is quite a bit of leeway in the variation of Q with
corner frequency that we can tolerate.

On the other hand, JNDs for amplitude are quite
small, and since messing with Q usually messes with
amplitude (or loudness), this might place a tighter con-
ditionon Q. What wereally need isa JND for resonance
amplitude variation across corner frequency sweeps.

Comparisons

Root Loci: The Root Loci for the above-mentioned fil-
ters (Figures 13-15) are quite informative. These plots
show dominant-polelocations versus sweeps of p and k
(in the bilinear case, k is scaled with the separation ta-
ble). Constant-Q polelocationsare shown onthe z-plane
grid, so we can see how thefilters deviate from constant-
Q (at least at high frequencies). Theloci also show how
the tuning acts versus p.

Note that in al cases, k = 0 gives the positive real
axis. Also note how the use of a separation table (Fig-
ure 13) guarantees stability, at the expense of the extra
table lookup.

Constancy of Q: These plots (Figures 16-18) show
the frequency ranges and Q ranges over which the fil-
ters approximate constant-Q (again, thisis based on the
location of the dominant poles). These show the Q as
p varies, with k held constant at various values (except
inthe bilinear case, where the separation tableis used®).

5Again, separation tables would also work in the other casesto get
better curves, but the intention is to find filters for which the use of a
separation table is unnecessary. It is necessary in the bilinear case for
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Figure 13; Dominant pole locations for p and k sweeps,
Bilinear with separation table.
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Figure 14; Dominant pole locations for p and k sweeps,
Back-Diff, no separation table.

This type of plot is one of the more useful pieces of in-
formation when designing VCFs that are intended to be
constant-Q.

Bode Plots: A complete set of Bode plotswould take
up much too much space, so instead a single p sweep
is shown for each filter, with k held constant (with sep-
aration table in Bilinear case) at a value that gives a
medium Q (Figures 19-21).

Oversampling: Another way to approach constant-
Qisto oversample. AlImost al filters of thistype can be
tweaked to act very well over a small frequency range.
Oversampling reduces the range of desired frequencies
significantly, thus making the VCF design problem eas-
ier. Thisis also understandable from the viewpoint that

stability reasons.
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Figure 15: Dominant pole locations for p and k sweeps,
Compromise, NO Separation table.

4
10 T T T

10 -3 ‘—2 ‘—1 ‘

1
frea (radians)

Figure 16: Q vs. corner freq. for various (pre-scaling) K,
Bilinear with separation table.

highly oversampled systems are better approximations
of continuous-time systems, because the region about
z= 1 can belinearized down to arectangular coordinate
system (just like the CT coordinates) by the approxima-
tions

rsin(@) — r 0

rcos(6) — r
furthermore, for r ~ 1,

rsn®) 29 o
6—0

rcos(6) — r
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Figure 17: Q vs. corner freq. for various k, Back-Diff, no
Separation table.
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Figure 18: Qvs. corner freq. for various k, Compromise, no
Separation table.

On the other hand, oversampling isless efficient. For
an oversampling factor of M, the oversampledfilterisM
times more expensive. This may be useful, however, if
because of the oversampling, the cost of the filter can
be significantly reduced (cf. the above argument that
the design is simpler). Oversampling can also aggra-
vate certain numerical errors, such as coefficient round-
off, because all the poles become bunched up around
z = 1, which increases sensitivity to the coefficient er-
rors (Franklin & Powell 1990, p. 339)

Constant-Q Filters, Algebraic Derivation

If efficiency is not a problem, we can directly write the
equations for the denominator of the desired filter:

2 poles:
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gain (dB)

-3 -2 10—1 100

freq (rad)

Figure 19: Bode plots, constant pre-scaling k (medium Q),
various p, Bilinear with separation table.
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Figure 20: Bode plots, constant k (medium Q), various p,
Back-Diff, no separation table.

(z— e %0e18)(z— g=%%if)
4 poles:

(z— e 90 19)(z— e798el®)(z—a)(z—b)

In the four-pole case, the placement of the other two
polesisamatter of design. If we comparewith theroot-
locus of the bilinear case (Figure 6), which hasthe other
two poles somewhere closer to the origin, it may be that
some good choices for the other poles are: (1) both at
z= 0, (2) same angle as the main poles, but with are-
ducedradius, (3) sameangle, lower Q, or (4) at thesame
positions as the main poles (so they become repeated).

Multiplied out, the two-pole denominator is:

7 + 279 cos(0)z+ e~20®

As afirst pass at making this efficient, we could use
table lookups for the exponent and cosine, making for
2 table lookups (probably interpolated) and 2 multiplies
for each new pole location.

A further efficiency increase comes in constant-rate
frequency sweeps, where the update rate is constant.
This satisfies the equation:;

e @ a(t) _ e—u(a+bt) — e—aae—ubt
at=ty+At,

g @ B(to+At) e—aae—abtoefo(b At
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gain (dB)
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10
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Figure 21: Bode plots, constant k (medium Q), various p,
Compromise, NO Sseparation table.

So that at the denominator is;

Z +ey(t)cos(B(t))z+ ex(t)

where

et +At) = e (t)der

e (t + At) = e(t)3ep O ey (t + At)?
and

661 — efab At

6e2 = 5e%

0¢1 Need only be evaluated at the beginning of the
sweep, thus we get rid of one table lookup per At. This
technique can be used to smooth low-rate 6 updates. If
necessary, this method can a so be used on a sweeps (or
both).

4 Root-LocusFilters

Other patterns that show up in root-locus analysis can
also be used to create useful sweepablefilters. In partic-
ular, we can directly look for patternsthat are useful for
digital filters, rather than finding useful continuous-time
patterns and then transforming the filters to discrete-
time. We can call filters designed this way “Discrete-
Time Root-Locus Filters’S.

A common pattern in root-loci is a circle surround-
ing a zero. Circles are particularly interesting from a
discrete-time perspective because of the region of stabil-
ity inz, whichisaso acircle.

The Two-Pole Constant-Bandwidth Root-
L ocus Filter

By placing an open-loop zero on the origin, and two
poles on the positive real line (so, using the notation of

6By analogy, the Moog VCF is a Continuous-Time Root-Locus
Filter
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Figure 3, G(s) = z/(z— a)(z— b)), we can get a root-
locus (in K) that is a circle centered on the origin with
aradius that is the geometric average of the pole loca-
tions. A particularly simple choice of pole locationsis
thereforeto put them both on the desired radius: G(s) =
z/(z—r)? (Figure 22).

Figure 22: Root locus of this 2-pole RL Filter, r = 0.8.

We thus have two trivial controls: (1) k controls pole
angle (corner frequency), and (2) the open-loop polelo-
cation controlsthe poleradius. Becausetheroot locusis
a perfect circle (this can be easily shown), the radiusis
constant over all frequencies(to the limits of the number
system), so stability is not a problem. The controls are
also completely uncoupled. frequency isrelated to k as
k=2r(1-cog(0)), and radiusasr = (pole location).

Thisfilter is not necessarily any more efficient than a
direct-form filter ( denom = 22 + 2rcz+ r2), which also
has uncoupled radius and angle controls with 0 related
to ¢ as ¢ = cos(0) — essentialy the same control com-
plexity. It may, however, have different numerical prop-
erties.

Root-L ocus Filters

Constant-Q

It is commonly held that constant-bandwidth filters are
less useful than constant-Q filters. We can therefore
modify the above root-locusfilter to try to approximate
constant-Q. The first pass is to note that at large Q,
the constant-Q root trajectorieslook visualy likecircles,
and shift the root- locus circle over to touch the unit cir-
cleat z= 1, like the constant-Q tracks do. Thiswould
give a pseudo-Q control with the open-loop zero loca
tion (G(s) = (z—c)/(z— 1)?), with zero | ocations nearer
z=0giving higher average Q (here the open-loop poles

Approximating
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would befixed at z= 1). Unfortunately, root-locusrules
state that the root-locus tracks must leave the real axis
at +£90°,7 so that at low frequencies, Q — oo, NO matter
where the zero is (see Figure 23).

polesatz=1.0

10°

frea (rad)

Figure 23: Qvs. angle, various zero locations.

The next modification would be to move the open-
loop polesin from z = 1, so that Q doesn’t go to « at
DC (G(s) = (z—¢)(z— (1—¢))?). Thiscauses Q to go
to zero at DC, rise quickly at low frequencies, and then
settle in to the same pattern as above at high frequencies
(see Figure 24).

poles at z = 0.9999

10°

4
10 ¢

c=.001

frea (rad)

Figure 24: Qvs. angle, various zero locations.

Further flattening of Q can be achieved by adding
pole/zero pairs inside the unit circle. This technique,
well known in control-systemsdesign, isused to locally
warp the root locus. A pole/zero pair has a large effect

the actual constant-Q tracks leave z = 1 at angles greater than
+90°
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on /G(z) near the pair (remember, the root-locusis dll
z for which /G(z) = m), but away from the pair, they
cancel each other and have little effect on the root lo-
cus. One can control the effects of the pair by control-
ling their separation and distance from the locus (close
together = more localized effect = most be closer to
locus, but has stronger effect because of proximity to lo-
cus, further apart = morewidespread, but weaker effect
due to usually being placed further from the locus).

A quick designusing thiseffect isshownin Figure 25,
itsroot locusisshownin Figure 26. By adding pole/zero
pairs and shifting the main open-loop pairs, one can fol-
low an ad-hoc optimization path and minimize the de-
viation from some desired Q. The filter shown was de-
signed by eyeballed trial-and-error®, but an optimization
procedure could be designed.

1
10

10 = o
10 10 10
freq (rad)

Figure 25: Q vs. angle, eyeballed minimum-Q-error filter.

Figure 26: root locus, eyeballed minimum-Q-error filter.

Unfortunately, thistechniquedoesn’t easily lend itsel f
to parameterizing Q, because a new optimization may

8The pole/zero pairs were on the real axis to make things easier:
polesat z=[.5.9.97 .9975 1 1], zeros at z= [.1 .55 .92 .975 .9983].
Thisparticular Q ~ 5isadmittedly an easy design compared to avery
high Q, but it serves as an example of the idea.
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need to be donefor each Q (although a pattern could de-
velop upon which a parameterization could be based).
Also, itislikely not very efficient, due to the number of
pole/zero pairs greatly increasing the order of the sys-
tem.

5 Conclusion

Implementability issues make the conversion of the
Moog V CF to adigital form nontrivial. Once converted
using standard techniques, the filter must be tweaked
to recover some of the origina features. Some trans-
forms preserve features better than others, but best re-
sults come from redesigning the filter directly in the
discrete domain. Methods from control-systems theory
prove useful in this redesign. These methods also sug-
gest new topologiesthat prove interesting.

References

[Hutchins 1975] Hutchins, B. 1975. Musical Engineer’s
Handbook. Ithaca, New York: Electronotes.

[Moog 1965] Moog, R. A. 1965. “A Voltage-Controlled L ow-
Pass High-Pass Filter for Audio Signal Processing.” Audio
Engineering Society Convention, Preprint 413(Oct.).

[Zwicker 1990] Zwicker, E. 1990. Psychoacoustics. New
York: Springer Verlag.

[Franklin & Powell 1990] Franklin, G., J. D. Powell, M. L.
Workman, 1990 Digital Control of Dynamic Systems, 2nd
Edition Reading: Addison Wesley

[Franklin & Powell 1994] Franklin, G., J. D. Powell, A.

Emami-Naeini, 1994 Feedback Control of Dynamic Sys-
tems, 3rd Edition Reading: Addison Wesley

[Morse 1981] Morse, P.1981 Vibration and Sound Acoustical
Society of America.

[Smith 1983] Smith, J. O. 111 1983 “Techniques for Digi-
tal Filter Design and System Identification With Applica-
tio to the Violin” Ph.D./JEE Thesis, Stanford University,
CCRMA Report STAN-M-14

This paper can be found online at the web page:
http://www-ccrma.stanford.edu/"stilti/papers

Analyzing the Moog VCF



