Investigation of Instrumental Timbres in a 2-D Emotional Space

Song Hui Chon, Eric Derr, James Palmer, Jordan Smith

Outline

- Introduction
- Historical Precedents
- Motivation
- Experiment
 - > Interface
 - > Hypotheses
 - ➤ Data Analysis/Interpretation
 - Possible Results
- Further Research/Conclusions

Introduction

- ❖ MacDorman et. al (2007)
 - Emotion and loudness/pitch/rhythm
- Link between specific timbres and their propensity for expressing certain emotions
- * TX802 timbre space.
 - > Map results on timbre space

Examples

- Interested in reaction to isolated timbre not entire passages
- Timbral qualities of notes in isolation may have an effect on emotional judgments made for an entire passage

Historical Precedents

- Emotion and affect have been attached to music since music theory began
- Aristotle speaks of the Greek modes evoking certain emotions in *Politics* (c. 350BC):
 - > Lydian: decorous, educative
 - Phrygian: enthusiastic, warlike
 - Mixolydian: sad, grave
 - Dorian: moderate, settled

The Illusion of Instrument/Emotion Association

- Tunings and temperaments affected early instruments' sound
- Certain modes or keys could be strongly associated with certain instruments
- Composers in certain time periods or in certain types of music leaned toward certain instrument/ emotion combinations

Affects of modes and keys changed through time

❖ If even modes and keys depend on context, a certain emotion being attached to a certain instrument was surely an incidental or purely contextual phenomenon

Biological motivation

Strong links between emotional states and modes of vocal expression:

angry voice -> sharp attack, growling texture soothing voice -> soft attack, smooth texture

Biological motivation

- Banse & Scherer 1996:
 - people can recognize or discern the emotion of recorded speech, generally 4-5 times better than chance.
 - rightharpoonup accoustic correlates to emotion include pitch, intensity, spectral energy, and timing.
- Pierre-Yves 2003:
 - results for emotion detection based on timbral features of speech.

Why Our Experiment?

- There may be latent characteristics that give certain instruments a higher propensity for certain emotions
- We want to strip off the contextual and historiographical layers, as well as those of dynamics, pitch, rhythm, and pitch and timbral relationships
- ❖ Without immediately pinning down specific emotions, our experiment will check for similarities in increased or decreased energy and positive or negative valence

The Experiment

- Using 2-D emotion model from Schubert 1996
 - > Valence (Positive vs. Negative)
 - > Energy (High vs. Low)

Subjects

- ➤ Group 1: Valence only
- ➤ Group 2: Energy only
- ➤ Group 3: Both Valence and Energy

Stimuli

- > All timbre stimuli sets known so far
- > 21 TX-802 instrument tones including hybrids
- Different segments of sounds
 - > attack only
 - > steady-state only
 - > complete tone

Interface

Valence or energy judgments alone:

Interface

Valence and energy judgments together:

Interface

Proposed interface for arranging timbres:

- 1. There is no significant difference among male vs. female or musicians vs. non-musicians.
 - ➤ If difference among male vs. female
 - ➤ Investigate if frequency (or spectral centroid) dependent
 - > If difference among musicians vs. non-musicians
 - ➤ Investigate if amount of experience is significant
 - ➤ Investigate if specialty (e.g., a brass player) is significant

- 2. The results will be consistent between
 - ➤ Valence-only vs. Valence-Energy
 - > Energy-only vs. Valence-Energy
 - Euclidean distance between Valence-only and Energyonly vs. Valence-Energy

If not consistent, investigate if warped relationship exists

- 3. The portion of sounds presented is not a significant factor.
 - > Experiments with attack-only and steady-state portion only will exhibit similar behaviors as those with wholetone sounds.
 - > The results with whole tones will be independent of sound duration (greater than 300 ms).

- 4. There will be a cloud of observations for one instrument sound (and not scattered everywhere in the 2-D emotion space) from which we can estimate the center of mass and standard deviation.
 - > Centroids that are closer in distance may be mapped to instruments that are closer in 3-D timbre space.
 - > Standard deviation of a stimulus cloud may reflect the "confusability" and may be reciprocal to timbral salience.

- 5. It is possible to map a distinctive emotion to an instrument tone.
 - There will be a consistency in response regardless of gender, cultural background, and musical training.

- 6. There is a close relationship between the 2-D emotion space and the 3-D timbre space.
 - Instruments that are closely located in the 2-D emotion space will be neighbours in the 3-D timbre space.
 - Energy and/or Valence may be highly correlated with timbral dimensions (attack time, spectral centroid, spectral flux).

Pilot Experiment

- 2-D (both Energy and Valence)
- ❖21 TX-802 tones including hybrids
- 4 subjects
- Data analyzed in 1-, 2-, 3-dimensional MDS methods
 - > Energy-only
 - > Valence-only
 - > Euclidean distance of Energy and Valence

Timbre Dimensions

1) Attack time

2) Spectral centroid

3) Spectral flux

Data Analysis 1-D

Correlation coefficients

> Energy: 0.1873 -0.6546 0.3213

> Valence: 0.3091 0.1387 -0.2234

Data Analysis 2-D

Data Analysis 2-D

Correlation coefficients

Energy: 0.0518 -0.5047 0.2645

-0.1303 -0.2677 -0.1354

Valence: 0.1900 -0.1099 -0.1836

0.3981 -0.0522 0.0239

Euclidean Distance:

-0.2402 0.1508 -0.3104

-0.0821 -0.2563 0.0043

Data Analysis 3-D

Data Analysis 3-D

Correlation coefficients

-0.2103 -0.3473 0.1351

0.0447 0.0993 0.2810

Valence: -0.2218 -0.2215 -0.1432

-0.4683 0.2116 0.1277

-0.3762 -0.3345 -0.1785

Euclidean Distance:

-0.0204 **-0.5141** -0.0028

0.1485 -0.0417 0.0522

0.3251 -0.1824 0.2717

Data Interpretation

1) MDS analysis shows:

- ➤ Valence: 1-D similar to 2-D, which are slightly better than 3-D
- > Energy: 1-D slightly worse than 2-D, which is slightly better than 3-D
- ➤ Euclidean-Distance: 2-D similar to 3-D

Which means:

- ➤ No significant differences between 1-D, 2-D and 3-D solutions for Valence-only and Energy-only
- ➤ No significant differences among 2-D and 3-D solutions for Euclidean-distance observations

Data Interpretation

- 2) Correlation coefficients show:
 - ➤ No significant correlations between timbre space dimensions and MDS-emotion dimensions
 - Exception: Energy and Spectral centroid

Validity of Hypotheses

- Pilot study shows no significant correlations between MDS-emotion dimensions and timbre space dimensions.
 - > But only 4 subjects were tested

➤ What can we expect with a million subjects for our study?

Possible Results

Possible Results

- 1) We will perform MDS on the respondents' data, which may show that:
 - ➤ valence ratings can be mapped in fewer than 3 dimensions
 - >energy ratings can be mapped in fewer than 3 dimensions
 - both can be mapped in fewer than 3 dimensions
- Thus, for each axis in the emotion space, it may or may not be the case that respondents judge sounds consistently according to that criterion.

Possible Results

- 2) Then we will compare these data to the known timbre spaces where we may find that:
 - > the valence axis of the emotional space maps to an axis in the timbre space
 - > the energy axis maps similarly
 - ➤both axes map to the timbre space

❖ If only one of the axes of the emotion space successfully maps to the timbre space, we could perform the experiment again with a substitute axis (e.g., "dominance")

Further Avenues of Research

- Include percussion sounds
- Consider repeating this experiment on all musical notes to find trajectory of emotion space for entire range of an instrument
 - > Does the emotional "labeling" change over the frequency range?
- Survey normative perceptions of instruments' sounds in memory (no sound stimulus)
 - Compare result with emotion judgment of the "most typical"
 - ➤note (range)
 - **≻**loudness
 - > extended technique

Conclusions

How are we contributing to the general theory of timbre?

- ➤ Discover if latent emotional characteristics are inherent in various instrumental timbres
- ➤ Identify these characteristics
- ➤ Relate these findings to predetermined timbre spaces, thus trying to correlate valence and energy with other established timbral characteristics

Bibliography

- Banse, R., and K. Scherer. 1996. Acoustic profiles in vocal emotion expression. *Journal of Personality and Social Psychology*. 70(3): 614-36.
- Bigand, E., S. Vieillard, F. Madurell, J. Marozeau, and A. Dacquet. 2005. Multidimensional scaling of emotional responses to music: The effect of musical expertise and of the duration of the excerpts. *Cognition and Emotion* 19(8): 1113-39.
- Caclin, A., S. McAdams, B. Smith, and S. Winsberg. 2005. Acoustic correlates of timbre space dimensions: A confirmatory study using synthetic tones. *Journal of the Acoustical Society of America* 118(1): 471-82.
- Grey, J. M., and J. W. Gordon. 1978. Perceptual effects of spectral modifications on musical timbres. *Journal of the Acoustical Society of America* 63(5): 1493-500.
- McAdams, S., S. Winsberg, S. Donnadieu, G. De Soete, and J. Krimphoff. 1995. Perceptual Scaling of Synthesized Musical Timbres: Common Dimensions, Specificities, and Latent Subject Classes. *Psychological Research* 58(3): 177-192.
- Pierre-Yves, O. 2003. The production and recognition of emotions in speech: features and algorithms. *International Journal of Human-Computer Studies*. 59: 157-83.
- Schubert, E. 1996. Continuous Response to Music Using the Two Dimensional Emotion Space.

 Proceedings of the 4th International Conference on Music, Perception and Cognition.
 269-274.

Discussion Questions

- Do you think instruments carry inherent emotional information?
 - > Would it be related to the timbre of the instrument?
 - ➤ Would it affect (or be affected by) the mood of a piece of music?
- Would the emotional characteristics be additive?
 - > For example, if a harpsichord is consistently judged "high" in valence and a cello is consistently judged "low" in valence, would a harpsichord-cello fusion result in a relatively neutral valence?