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1 Overview

Knowledge of the instrumentation of a musical sig-
nal at any given time could be useful for major audio
signal processing problems such as sound source sepa-
ration and automated music transcription. Knowing
which instruments are playing is a first step toward
more intelligently designed solutions to these very im-
portant and largely unsolved challenges.

So, in this paper, we attempt the problem of iden-
tifying the instrumentation of a musical signal at any
given time using several machine learning techniques
(logistic regression, K-NN, SVM). We approached the
problem as a series of separate binary classifications
(as opposed to a multivariate problem) so that we
could mix and match the best algorithm for each in-
strument to create the best overall classifier.

2 Data

Data collection and labeling in audio research can be
extremely problematic. Hand labeling audio frames
(of lengths of 20 ms) is very difficult and time con-
suming. So, in order to expediate this process, we
chose to artificially manufacture our polyphonic mu-
sic by combining solo recordings of each instrument.

We chose to investigate 3 combinations of instru-
ments:

e Piano, Violin
e Clarinet, Piano, Violin
e Cello, Clarinet, Flute, Piano, Violin

We collected 4 samples each from 13 different
recordings for each of the five instruments (leading
to 52 total signals for each instrument). The samples

were each between 1 and 6 seconds in length, and con-
sisted only of the specified instrument playing in solo
(no silence). Then, to create one of the combinations
above, a random signal for each instrument were all
combined randomly. In this way, we created 52 total
signals for each instrumental combination. The final
12 signals of these 52 were created from recordings
completely independent of those for the first 40, giv-
ing our training (the first 40) and test (the final 12)
data.

We used examples from multiple recordings in or-
der to create a more robust system. An instrument
will have many unique features on a given recording.
Every individual instrument has a unique character
(due to materials. construction process, body shape,
age, etc.), and every individual performer creates a
different sound with the instrument. There are also
many different playing techniques, and then micro-
phone choice and positioning as well as digital effects
and equalization will all create significant variations
between recordings. So, in order to effectively analyze
an arbitrary recording, we need to train our classifiers
with multiple examples.

The test data was created from recordings inde-
pendent of the training data in order to simulate the
real-life situation of encountering a recording with
new filtering, players, etc.

3 Features

The data was first segregated into frames of 1024 sam-
ples each ( 23 ms). This frame size was selected for
its wide use in speech processing applications.

Once divided, we chose to describe each frame with
three types of features, which were decided based on
acoustic knowledge of the instruments:



e Magnitudes of the Discrete Fourier Transform
(DFT)

e Mel Frequency Cepstral Coefficients (MFCCs)

e Change in energy from frame to frame

3.1 DFT Magnitude

Every instrument has defining characteristics in the
frequency domain. Frequency range and frequency
bandwidth are often indicative of an instrument.
Characteristic frequency peaks independent of a
note’s pitch, known as formants, are also often
present in the spectrum of a certain instrument.

In hopes of exploiting these types of differences,
we included the magnitude coefficients of the DFT
of each frame. In order to reduce the size of the
data set, we averaged the coefficients in 4 neighboring
bins to reduce the resolution. We also cut off the
analysis in the 84*" bin, or 3620 Hz, because visual
analysis of spectrograms determined there was not
enough energy present above that point to warrant
inclusion of the data.

3.2 MFCCs

MFCCs are used extensively in speech and speaker
recognition. Essentially, they represent the Discrete
Cosine Transform of the log spectrum of a signal
analyzed on an auditory frequency scale (the Mel
scale). The process creates a 13-dimensional vector
that summarizes the signal’s spectrum.

We included MFCCs to represent the differences in
the shape of the spectrum for different signals (which
cause the timbral differences that provide one easy
means for the ear to differentiate the signals).

3.3 Energy Change

Different instruments also behave differently over
time. Some instruments attack quickly and then de-
cay exponentially from there. Other instruments at-
tack slowly then decay quickly. Every instrument
has a unique amplitude envelope over time (known
in synthesis as the ADSR, or Attack, Decay, Sustain,
Relief).

The energy changes of the previous 6 frames were
included as a result of this. This feature set will indi-
cate the most recent tendencies in the energy change,
showing whether there has recently been a sudden
attack, slow attack, sudden decay, or slow decay (or
some combination).

4 Algorithms

Using these features, or some subset (see below), we
attempted the problem with four different methods:

e Logistic Regression
e K-Nearest Neighbors (K-NN)

e Support Vector Machine (SVM) with Linear
Kernel

e SVM with Gaussian Kernel

4.1 Logistic regression

Logistic regression was implemented using standard
gradient descent. The data was cycled through mul-
tiple times using a decaying « parameter (decaying
from .1 to .0001) to provide a quick convergence.

4.2 K-NN

K-NN was implemented with the SOM toolbox [1].
For every instrument in every combination, every
value of K from 1 to 2000 was considered. Selection
of the K parameter is described in the Training and
Testing section.

Distances between points were calculating using
the euclidean norm. In order to minimize the dom-
ination of a given feature, we preprocessed the data
to unit variance in all features.

4.3 SVM

SVMs with each kernel were implemented using Spi-
der [2]. For each instrument, a model selection was
performed separately with each of the kernels.

For the linear kernel, 10 logarithmically spaced val-
ues of C were used. For the Gaussian kernel, 10 loga-
rithmically spaced values of C and 10 logarithmically
spaced values of o (a total of 100 combinations of
parameters) were used.

A larger number of parameter values would have
been desirable but due to high computation time
(some of the matlab scripts took well over 24 hours
to run), we decided to stick with the current set of
parameter values. Logarithmic spacing of parameter
values has been used so that a larger range of values
could be spanned.

Selection methods are described in the Training
and Testing section.



5 Training and Testing

As described in the Data section, the data was split
into two completely independent pools, designated
training and testing. However, due to the high com-
putation cost of training SVMs, we were forced to
reduce the data size and feature set to yield reason-
able computation times (around 24 hours). So, in the
case of SVMs, only the MFCCs and temporal energy
changes were used (DFT coefficients were excluded).
Also, in each case, a trimmed data set was used for
training. In the case of 2 instruments, signals 1 to 30
were used. For 3 instruments, signals 1 to 25 were
used. And, for 5 instruments, 1 to 15 were used.

In all cases, the testing set was identical.

For logistic regression and K-NN, the algorithms
were run in two different situations. In one case, the
algorithms were trained and tested on the same lim-
ited data set and feature set as the SVMs. From here,
those will be referred to as limited logistic regression
and limited K-NN.

The algorithms were then run again using all of the
available data (full training set, full features). Those
cases will be referred to as full logistic regression and
full K-NN.

5.1 Model Selection - SVM and K-NN

In the case of SVM and K-NN, it was necessary to
perform model selection to find the values for C, K,
and 0. For SVM and limited K-NN, we used 70-30
cross validation to select the model, dividing the lim-
ited training set into the selection training and selec-
tion testing sets. The parameters were then selected
as the values that achieved the best error rates.

For full K-NN, 70-30 cross validation was again per-
formed, but this time using the full training and fea-
ture sets. These selected parameters are displayed in
Fig. (1) for K-NN and Fig. (2) for SVM.

It should also be noted that, as stated before, the
parameters for the SVMs were not able to be opti-
mized beyond one pass over a wide logarithmic scale.

5.2 Results

Once model selection was complete, we predicted the
instrumentation in the test signals. In the case of lo-
gistic regression and K-NN, separate predictions were
made using the limited and full cases. Tables contain-
ing test accuracy for each instrument can be found in
Fig. (3) for limited cases and Fig. (4) for full cases.

Limited K-NN | Full K-NN
Piano 28 36
Violin 19 513
Clarinet 309 78
Piano 18 74
Violin 1883 48
Cello 1817 9
Clarinet 1966 177
Flute 35 268
Piano 260 112
Violin 1691 1508

Figure 1: K values selected for K-NN

The differing computational costs of the algorithms
prevent us from simply determining the best overall
approach for each case, because there are two ways to
view the data: one is to consider all the algorithms
on the limited scale to assess the best performance
on the same data, and the other is to compare the
SVMs to the full logistic and K-NN to determine the
best option with a realistic computation time. We
analyzed the data in both ways.

5.3 Limited Case Analysis

SVMs, in general, give strong results with both ker-
nels. The linear kernel is at or near the top perfor-
mance for every classification except clarinet, cello,
and piano in the five instrument case. The gaussian
kernel is at or near the top performance for every clas-
sification except clarinet in the three instrument case,
and flute, clarinet, and piano in the five instrument
case.

SVM-Linear SVM-Gaussian
C C o

Piano 10000 59.9484 | 12.9155
Violin 0.006 1 12.9155

Clarinet 0.001 0.001 0.01
Piano 215.4435 1000 | 35.9381
Violin 0.001 1000 12.9155
Cello 0.01 21.5443 | 12.9155

Clarinet 0 0.0001 0.01
Flute 1 21.5443 | 12.9155
Piano 0 0.2154 | 12.9155
Violin 0.0005 0.0464 | 1.6681

Figure 2: Parameters selected for SVM



Logistic | K-NN | SVM-Lin. | SVM-Gaus.
Pf | 0.7742 | 0.8991 0.8947 0.8954
V1 | 0.8538 | 0.6923 0.8755 0.8723
Cl | 0.6899 | 0.7018 0.7327 0.6581
Pf | 0.7295 | 0.7122 0.7835 0.7889
V1 | 0.7232 | 0.7816 0.7580 0.7669
Ve | 0.6678 | 0.7006 0.6885 0.7368
Cl | 0.7515 | 0.7137 0.7137 0.7137
FlL | 0.7985 | 0.8037 0.8229 0.5869
Pf | 0.6958 | 0.6564 0.6558 0.6494
V1 | 0.7541 | 0.7791 0.7961 0.8049

Figure 3: Test accuracy of limited algorithms. (Ve
- Cello, CI - Clarinet, F1 - Flute, Pf - Piano, VI -
Violin)

Limited logistic regression comfortably outper-
forms all other systems for the clarinet and piano in
the five instrument case.

The only cases where limited K-NN outperforms
the other algorithms are piano for two instruments
and violin for three instruments. However, in both
cases, SVMs are able to get similarly accurate results.

5.4 Full Case Analysis

In the two instrument case, the full logistic regression
and full K-NN are outperformed by the limited algo-
rithms. However, as the instrument combinations be-
come more complex, the full algorithms become more
and more effective. The most significant improve-
ments are with the clarinet and piano in the three
instrument case and with the piano in the five in-
strument case, where the full algorithms greatly out-

Logistic | K-NN
Pf | 0.8369 | 0.8732
V1 | 0.8686 | 0.8665
Cl | 0.7333 | 0.7705
Pf | 0.8126 | 0.7825
V1 | 0.7529 | 0.7859
Ve | 0.7499 | 0.7433
Cl | 0.7489 | 0.7523
F1 | 0.7886 | 0.8318
Pf | 0.7459 | 0.7593
V1 | 0.8078 | 0.8171

Figure 4: Test accuracy of full algorithms. (V¢ -
Cello, Cl - Clarinet, F1- Flute, Pf - Piano, V1 - Violin)

perform the limited algorithms.

Even though full K-NN is often the best classifier,
it is an extremely data inefficient algorithm. In or-
der to make a prediction, the new frame must be
compared to every training frame and then sorted.
The other algorithms are much more efficient in this
regard, so in applications were data storage or com-
putation speed are important, K-NN should not be
considered.

6 Conclusions

Fig (5) shows the test accuracy attained by combining
the best classifiers, both in the case of only consider-
ing limited algorithms and in the case of considering
all algorithms. We were able to make this step be-
cause of our initial decision to treat the problem as
separate binary classifiers.

In the two instrument case, we are able to predict
both instruments with an accuracy of 79.46%. In
the three instrument case, we were able to predict all
three instruments 51.69% of the time (with 8 possi-
ble combinations). In the five instrument case, we
predicted all five instruments correctly 42.44% of the
time (with 32 possible combinations).

The table also shows how often the classifiers cor-
rectly predict at least a certain portion of the com-
bination correctly. In some applications, this less re-
stricted level of accuracy could be as important.

6.1 Most Common Mistakes

Fig. (6) shows the instrument combinations that were
most common in false positive mistakes for each clas-
sifier. Fig. (7) shows the combinations the were most
common for false negatives.

6.2 Future Work

For our future work, we would like to find either more
efficient SVM software or more powerful computers
so that we could experiment with feature selection,
which will be especially important as we attempt to
augment and refine our feature set. Ideally, we could
even select different feature sets for each instrument’s
classifier, as was seen in [3] (though, in this case, each
possible combination of instruments was given its own
binary classifier, each of which using an individually
optimized feature set).

Also, we would like to correct two trends that we
see in our results. One is that our overall accuracy



# Correct | Limited Best | Overall Best
1 0.9801 0.9801
2 0.7946 0.7946
1 0.9843 0.9927
2 0.8518 0.8594
3 0.4671 0.5169
1 0.9948 0.9983
2 0.9564 0.9718
3 0.8337 0.8618
4 0.6316 0.6543
5 0.3955 0.4244

Figure 5: Test accuracy for Limited Best and Overall
Best for different number of instruments required to
be correct.

drops a great deal in moving from two instruments
to three, but then remains about the same in the
move from three to five instruments. The other is
that there is a great deal of consistency in the most
commonly mistaken combinations across the different
algorithms.

Both of these trends indicate to us that we need
to expand/improve our feature set. The fact that the
classifiers all make similar mistakes suggests that the
classes are not properly resolved in the feature space
in those cases. Also, the similarity in performance

L-Log. | L-K-NN | SVM-L | SVM-G | F-Log. | F-K-NN
Pf | PLVl Pf Pf,VI PE,VI PE,V1 PE,VI
Vvl | PfVl Pf,V1 Pf,V1 Pf,V1 Pf,V1 Pf,V1
Cl Cl Cl Cl - Cl Cl
Pf | PfVI | CLPEVL | PEVI | CLPEVI | CLPf Pf,V1
V1 | CLPfVI | CLPEVI | PfVI Pf,V1 Pf,V1 Pf,V1
Ve Ve Ve Ve Ve, Pt | Ve,Pf | Ve, Pt
Cl cl Cl cl cl Ve,Cl cl
Fl Fl Fl Fl Fl Fl Fl
pf Pf pf pf Pf Pf Pf
V1 | VeVl Ve, V1 V1 VeVl | VeVl | VeVl

Figure 7: Most commonly mistaken combinations for
false negatives. (Ve - Cello, Cl - Clarinet, F1 - Flute,
Pf - Piano, VI - Violin)

and feature set can both yield significant results.

However, in order to most efficiently enhance the
performance of our classifiers, refining the feature set
is most necessary.
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