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ABSTRACT 

Musical instrument classification is one of the biggest and the most popular problems in music 

information retrieval (MIR). The usual goal is to accurately classify sounds from one or more 

instruments according to the instrument family (such as string, wind or percussion). The classification 

is done using various descriptors (or features) that are computed from the sound stimuli based on 

information on pitch, timbre, excitation method and others. The zero-crossing rate, spectral centroid 

and mel-frequency cepstrum coefficients (MFCCs) are only three examples. A good number of 

previous works have concentrated on improving the classification performance by using a smart 

machine-learning algorithm on a set of previously proven efficient features, which are not necessarily 

related to timbre. This paper considers only the descriptors that are related to timbre perception, since 

timbre is one of the primary perceptive cues in human classification of musical instruments. Statistical 

analysis techniques were used for this approach to find out the best and the worst descriptors in two 

problems in musical instrument classification – instrument family classification and excitation 

classification in the wind instrument family. The result shows that there may be certain descriptors 

that are better and more reliable than others, with a moderately successful classification rate. The 

performance is expected to improve with an efficient combination of two or more “better” descriptors. 

 

1. INTRODUCTION 

Classification of musical instrument sounds is an important problem in MIR [Martin & Kim 

1998] [Herrera-Boyer et al. 2003] [Livshin & Rodet 2004] [Wieczorkowska & Kolczynska 2008]. It 

is related to other major problems such as (multiple) fundamental estimation, timbre recognition 

& classification, solo instrument identification and automatic transcription. The main goal is 

maximization of the correct classification (and usually labeling) of the instrument sounds within 

the given criterion (e.g., the instrument family classification, the instrument recognition, or the 



excitation type classification) using a set of descriptors whose values are extracted from the 

input stimuli using the information on pitch, timbre and other aspects.  

Timbre is a multidimensional perception of sound. It is defined as “[…] that attribute of 

sensation in terms of which a listener can judge that two sounds having the same loudness and 

pitch are dissimilar” [ANSI 1973]. Timbre is what enables us to distinguish the sound of A4 in 

mezzoforte on a violin from that on a piano. Ever since Helmholtz wrote about timbre 

perception in his book [Helmholtz 1877], there have been many attempts to define timbre space 

that models the human perception of timbre [Grey 1977] [Grey & Gordon 1978] [Krumhansl 

1989] [Iverson & Krumhansl 1993] [Kimphoff et al. 1994] [McAdams et al. 1995] [Lakatos 2000] 

[Caclin et al. 2005] [McAdams et al. 2006] using Multidimensional Scaling (MDS) [Borg & 

Groenen 1997]. Each work lists the most important acoustic correlates according to their 

analysis, some of which are common across most works. However, currently there is no unified 

model that explains the human timbre perception across all instrument families. 

Rioux and his colleagues at IRCAM collected timbre-related descriptors that are used in 

music research [Rioux et al. 2006]. It turned out that there are more than 70 descriptors related to 

timbre perception, but very little systematic evaluation has been done on those descriptors 

[Giordano & McAdams 2009]. This paper aims at a performance evaluation of those descriptors 

in two applications of musical instrument classification. One is the instrument family 

classification, which is to assign instrument sounds according to the instrument family (e.g., 

string, wind or percussion). The other is the excitation classification problem in the wind 

instrument family. Same statistical techniques – K-means clustering and correlation analysis – 

were used for those tasks.  

 

2. ANALYSIS 

2. 1. DATA 

Six well-known sets of stimuli were used for this project [Grey 1977] [Grey & Gordon 1978] 

[Krumhansl 1989] [Iverson & Krumhansl 1993] [McAdams et al. 1995] [Lakatos 2000]. Some of 

these sounds were recordings of real instrument sounds and some others were generated from 

synthesis. In total, there were 135 instrument sounds, from which 114 stimuli were selected after 

selecting only the non-modified and non-hybrid stimuli that were studied before. The list of 135 

stimuli as well as the 114 chosen stimuli can be seen on Table A1 in Appendix I. 

 

 



2. 2. DESCRIPTORS & FEATURE VALUES 

Rioux et al. lists more than 70 descriptors that are related to timbre perception [Rioux et al. 

2006]. A few of them are very similar to others, so the list came down to 70 descriptors after 

removing those rather redundant ones. Detailed information on each of the descriptors is listed 

on Table A2 in Appendix I. 

The feature values for statistical analyses were obtained by computing each timbre 

descriptor value on each of the 114 sound stimuli. Therefore the input data for analysis was in 

the form of a matrix, with 114 rows and 70 columns. The feature values were not normalized. 

 

2. 3. ANALYSIS 

There are four research questions that this paper addresses. First, what are the relationships 

among the descriptors? Second, are there better or worse descriptors in the classification of 

musical instrument family? Third, is any stimulus consistently harder to correctly classify than 

others? And fourth, are there better or worse descriptors in the classification of excitation 

method in the wind instrument family? The following subsections describe the analyses and 

their interpretations for these questions. All analyses were done in SPSS and MATLAB. 

 

2. 3. 1. Relationships among descriptors 

Table 1. The list of 70 descriptors in 9 clusters and the representative(s) of each cluster 

CLUSTER DESCRIPTORS 
1. Spectral Slope DECI, DECIDB, DECS 
2. Spectral Centroid CGSILO, CGSMAX, CGSRMS, CGSMOY, CGSH, CGSI, CGSB, 

CGSA, CGS, CGSB2, CGSC 
3. Spectral Flux FLMAX, FLRMS, FLMOY, FLI 
4. Spectral Spread (STD) STDILO, STDI, STDH, STDMOY, STDRMS, STDMAX, STDB, 

STD, STDB2, STDC, STDA 
5. Spectral Deviation DEVMAX, DEVRMS, DEVMOY, DEVIDB, DEVS 
6. Spectral Shape SKEW, KURT, IPH, VSRATE, SLOPE, STDIDB, CGSIDB 
7. Fluctuation & Roughness MAGCO, ROUGH, FLUC, MAXIMUM 
8. RMS Power & Energy LDBA, LDBB, LDBC, LDB, NRGB, NRGI, NRGH, CGT, STDT, 

ED, ITMPN1, MIX, ACUM 
9. Attack Time DEVI, HAC, ITMPN3, ITMPN2, ITMPN4, VSPH, VSPC, LTMM, 

LTMLM, LTMR, LTMLR, LAT 

The first question this paper addresses is the relationships among timbre descriptors. For 

that purpose, Correlation Analysis was used on the descriptors that belong to each of the nine 

clusters specified by Rioux et al. [Rioux et al. 2006] For each cluster, correlation coefficients were 



calculated on every pair of feature values belonging to that cluster and either one or two 

descriptors are chosen that have the highest correlation with other descriptors, hence best-

representing their cluster. A few clusters seemed to be further divided into two subclusters, 

where there are very high intra-correlations among the descriptors within each subcluster, but 

little inter-subcluster correlations. Two descriptors were chosen in this case to represent each of 

the subclusters. Table 1 shows the representatives of the nine clusters, which are in bold fonts. 

 

Figure 1. Correlation diagram of the 14 representative descriptors  

After narrowing down to 14 representatives (from 70 descriptors), another set of correlation 

analysis was carried out to figure out the relationships between every possible pair of the 14 

descriptors. This gives us a rough idea of the relationships among the descriptors. Figure 1 

illustrates the analysis result. The black lines represent positive correlations and the red ones 

negative correlations. The length of a line does not have any meaning. What is important is the 

thickness of the lines – a thicker line represents a bigger degree (either positive or negative) of 

correlation between two descriptors. Some descriptors are grouped into a same group by a thick 

dark blue circle, which means that they belong to the same cluster. With the cases of CGS – 

CGSRMS and STDMOY – STDB2, we can see that there are rather thick lines connecting the 

pairs of descriptors, representing that these values are highly correlated. With the other three 



cases, we can see that the descriptors within each of the circles do not have any line connecting 

them directly. This is because the descriptors are not related measures of each other even though 

they belong to the same cluster from hierarchical cluster analysis. All the other single nodes 

represent four clusters that are represented by each of them. We can imagine a cloud of 

unspecified descriptors around each representative one on figure 1, which will give us an 

insight on how they are inter-related. 

 

2. 3. 2. Classification of musical instrument family 

K-means clustering was applied on every column of the input matrix (corresponding to each 

of the descriptors) for musical instrument family classification. Each stimulus belonged to one of 

the three instrument groups (wind, string and percussion) and the clustering output from SPSS 

was recorded for performance evaluation. The performance was then evaluated by counting the 

number of correctly classified stimuli, which is depicted in figure 2. The best performance was 

61% with each of MAGCO (from the fluctuation & roughness cluster) and ITMPN2 (from the 

attack time cluster) and the worst was 34 % with each of ACUM and ROUGH (both from the 

fluctuation & roughness cluster).   

 

 

Figure 2. The classification rate per descriptor from K-means clustering  

Figure 3 shows the classification rate per descriptor for each of the nine groups. From these 

graphs, we can see that spectral centroid, spectral flux and spectral deviation are more stable in 

performance, while roughness or attack time is not. Note that this figure does not say that the 

descriptors in roughness or attack time clusters are unstable in performance in general. They 



could still be consistently better than others in other types of classifications, even though they 

were not as consistent in the task of musical instrument family classification. 

 

Figure 3. The classification rate per descriptor in nine clusters 

 

2. 3. 3. Performance Evaluation of Stimuli 

The question of “are there any stimuli that are consistently better or worse than others in the 

instrument family classification?” came about during the interpretations of the K-means analysis 

result in figure 2. Further, I noticed that the three sets of stimuli from Iverson & Krumhansl 

[Iverson & Krumhansl 1993] seem to follow a very similar pattern and this was worth a further 

investigation. Figure 4 shows the three sets of stimuli in question. The X-axis lists the 

instruments corresponding to each stimulus and the Y-axis shows the best classification rate per 

stimulus across all 70 descriptors. In this figure, we can see that the Remainder curve (red) 

closely follows the Whole note curve (black) while the Onset only curve seems to show a similar 

pattern with an offset in the means. There are only a couple of places where all three curves 

coincide – MTP, Pf and TB. This seems to make sense considering that Pf and TB have relatively 

strong onsets in comparison with other stimuli, therefore the onset portion of the instrument 

sounds carries as much information as the remainder (or the whole tone). In the case of MTP, the 

mute applied to the trumpet changes the timbre, which seems to affect the onset portion of the 



sound so that all three cases (onset only, remainder or whole note) show the same performance. 

The exact nature of the change of timbre cause by the mute is beyond the scope of this study.  

 

 

Figure 4. Comparison of three sets of stimuli from [Iverson & Krumhansl 1993] (BN = 
Bassoon, CE = Cello, CL = Clarinet, EH = English Horn, FL = Flute, FH = French Horn, MTP = 
Muted Trumpet, OB = Oboe, Pf = Piano, SA = Saxophone, TN = Trombone, TP = Trumpet, 
TU = Tuba, TB = Tubular Bells, V = Vibraphone, VL = Violin) 

 

Figure 5. F-test result on the three sets of stimuli from [Iverson & Krumhansl 1993] 

With all the other stimuli (than MTP, Pf and TB), there seems to be a consistent offset 

between the onset-only case and the other two cases. An F-test on SPSS reveals that there is 

indeed a significant difference among the three means and a further post hoc test (Tukey’s) 



verifies that the onset only condition is significantly different from the other two and those two 

(remainder and whole tone) are not significantly different. This is illustrated in figure 5. 

 

Figure 6. The classification of each stimulus in the string family (HCD = Harpsichord) 

 

Figure 7. The classification of each stimulus in the percussion family (TB = Tubular bells, 
Bam = Bamboo chimes, Bon = Bongo drum, Cast = Castanets, Cele = Celesta, CymB = Bowed 
Symbal, CymS = Struck Symbal, Log = Log drum, Mar = Marimba, Snare = Snare drum, 
TamT = TamTam, Tamb = Tambourine, Temp = Temple block, Tym = Tympani) 

 

Figure 8. The classification of each stimulus in the wind family (BN = Bassoon, CL = 
Clarinet, EH = English Horn, FH = French Horn, OB = Oboe, TN = Trombone, TP = Trumpet, 
MTP = Muted Trumpet, SA = Saxophone, TU = Tuba, CH = Crumhorn Tenor, OG = Baroque 
Organ, RE = Baroque Recorder) 



 

Figure 9. The classification of all stimuli in all three instrument families (STR = string, 
WND = wind, PER = percussion) 

Note that in figure 4, CL is consistently worse than the BN. This motivated a close look at the 

classification performance in each instrument family, which are shown in figures 6 through 8. 

The x-axis is various stimuli and the y-axis is the best classification rate of one stimulus across 

all 70 descriptors. In figure 6, there are a few ‘string’, cello and violin points that seem to show 

lower than the average classification rate of the string family. In figure 7 with the percussion 

family, it is hard to say whether there are certain instruments with consistently lower 

classification rate since most of the stimuli were just one sample per instrument. In the case of 

the wind family shown in figure 8, CL, FL and MTP seem to show a consistently lower 

classification rate than the BN, TU or FH. One possible explanation may be that some 

instruments (such as BN, TU or FH) have a better classification rate because they are closer to 

the center of the ‘wind’ cluster from the K-means clustering while some other instruments (such 

as CL, FL or MTP) are farther away, thus with a bigger chance of misclassification. More data 

are required for a verification of this conjecture. 

Figure 9 shows the classification performance of all instruments in three families in one 

graph. It seems that each family (e.g., wind) follows a normal distribution, which is as expected 

from the Central Limit Theorem. However, there are a couple points in a small group with the 

classification rate much smaller than the mean in each instrument family, which may support 

the conjecture that there may be some instruments that are consistently harder to classify 

correctly than others. Unfortunately we do not have enough number of data points to either 

prove or disprove this conjecture. This will have to be verified in the future. 

 
2. 3. 4. Classification of excitation type in the wind instrument family 

The last research question this paper addresses is the classification of excitation type within 

the wind instrument family. There are four excitation types, which are listed on Table 2. 



Table 2. Four Excitation Types in Wind Instrument Family and the Instruments   

Excitation Instruments 

Airjet Flute, Baroque Recorder 

Single Reed Clarinet, Saxophone 

Double Reed Oboe, Bassoon, Crumhorn, English Horn 

Lip Reed (Muted) Trumpet, Trombone, French Horn, Tuba 

 

As in the instrument family classification, K-means (with K=4 this time) clustering was used 

on the 14 selected descriptors as determined from the Correlation Analysis. Among the 65 wind 

stimuli considered for the instrument family classification task, the baroque organ stimulus was 

excluded since the type of the organ pipe was not specified (which determines the exact 

excitation type of the stimulus). The clustering result was compared with the true classification 

and the correct numbers of classifications were counted for each descriptor. Figure 10 shows the 

performance of each descriptor.   

 

 

Figure 10. The excitation classification performance of 14 representative descriptors 

Even though the most representative descriptors were used for the classification task, the 

performance was not very good – maximum of 41 % correct. Unlike in the instrument family 

classification case, the MAXIMUM descriptor (in the fluctuations & roughness cluster) showed 

the best performance though all of them were in a similar range of performance (34 – 41 % 

correct). This is certainly not as good as what was hoped for, but it is still not too bad at all 

considering the poor performance in human classification of instrument’s excitation. 

 



3. CONCLUSION & FUTURE WORKS 

This paper considered 70 timbre-related descriptors for the musical instrument classification 

applications. Correlation analysis was applied first to figure out the relationships among the 

clusters of descriptors. 14 descriptors were chosen to be representatives of the nine clusters and 

the relationships among them were studied, which will be useful in various timbre-related tasks. 

K-means clustering analysis was used for the actual classifications of musical instrument family 

as well as the excitation types within the wind instrument family.  

The excitation type classification was not very successful, although it is by nature a harder 

problem than the musical instrument family classification. The musical instrument family 

classification showed a better performance in general, achieving over 60 % of correct 

classification with one descriptor. The next step will be finding an efficient way to combine two 

or three descriptors for a higher classification rate. 

Even though some clusters showed a better and more reliable performance in musical 

instrument family classification, that was not necessarily the case with the excitation type 

classification. This seems to mean that the best or the worst descriptor for one task will not 

necessarily show the same performance in another task. It may be worth an investigation to 

narrow down the list of “more efficient” descriptors for a few popular tasks. 

One thing I had considered but did not do for this project was normalizing the feature 

values. This may provide a better way of combining descriptors with desired weights. 

Currently, some values are very small (e.g., STDB) while some others are very big (e.g., 

MAXIMUM). If STDB is combined with MAXIMUM without any normalization, the 

performance will be dominated by the performance of MAXIMUM, which will not be desirable. 

After an efficient combination of descriptors is found, the next step will be an investigation of 

efficient algorithms, possibly based on machine learning concepts.  
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APPENDIX I 

 

TABLE A1. The list of 135 stimuli and their references 

Reference Number Abbrev. Description Family Note 

1 BN  Bassoon Wind  

2 BNt  Modified bassoon  Modified 

3 C1  Clarinet 1 Wind  

4 C2  Clarinet 2 Wind  

5 C2t  Modified Clarinet 2   Modified 

6 EH  English Horn Wind  

7 FH  French Horn Wind  

8 FHt  Modified French Horn Wind Modified 

9 FL  Flute Wind  

10 O1  Oboe1 Wind  

11 O1t  Modified Oboe 1  Modified 

12 O2  Oboe 2 Wind  

13 S1  String 1 String  

14 S1t  Modified String 1  Modified 

15 S2  String 2 String  

16 S2t  Modified String 2  Modified 

17 S3  String 3 String  

18 TM  Trombone Wind  

19 TMt  Modified Trombone  Modified 

20 TP  Trumpet Wind  

21 TPt  Modified Trumpet  Modified 

22 X1  Saxophone 1 Wind  

23 X2  Saxophone 2 Wind  

[Grey 1977] 

[Grey & 

Gordon 1978] 

24 X3  Saxophone 3 Wind  

25 OBassoon        Bassoon (onset only) Wind  

26 OCello          Cello (onset only) String  

27 OClarinet       Clarinet (onset only) Wind  

28 OEnglishHorn    EnglishHorn (onset only) Wind  

29 OFlute          Flute (onset only) Wind  

30 OFrenchHorn     FrenchHorn (onset only) Wind  

31 OMutedTrumpet   MutedTrumpet (onset only) Wind  

32 OOboe           Oboe  (onset only)          Wind  

33 OPiano          Piano   (onset only) String  

[Iverson & 

Krumhansl 

1993] 

34 OSaxophone      Saxophone  (onset only) Wind  



35 OTrombone       Trombone  (onset only) Wind  

36 OTrumpet        Trumpet (onset only) Wind  

37 OTuba           Tuba (onset only) Wind  

38 OTubularBellsOR TubularBells (onset only) Percussion  

39 OVibraphone     Vibraphone (onset only) Percussion  

40 OViolin       Violin (onset only) String  

41 RBassoon        Bassoon (remainder) Wind  

42 RCello          Cello (remainder) String  

43 RClarinet       Clarinet (remainder) Wind  

44 REnglishHorn    EnglishHorn (remainder) Wind  

45 RFlute          Flute (remainder) Wind  

46 RFrenchHorn     FrenchHorn (remainder) Wind  

47 RMutedTrumpet   MutedTrumpet (remainder) Wind  

48 ROboe           Oboe  (remainder)          Wind  

49 RPiano          Piano   (remainder) String  

50 RSaxophone      Saxophone  (remainder) Wind  

51 RTrombone       Trombone  (remainder) Wind  

52 RTrumpet        Trumpet (remainder) Wind  

53 RTuba           Tuba (remainder) Wind  

54 RTubularBellsOR TubularBells (remainder) Percussion  

55 RVibraphone     Vibraphone (remainder) Percussion  

56 RViolin       Violin (remainder) String  

57 WBassoon        Bassoon (whole tone) Wind  

58 WCello          Cello (whole tone) String  

59 WClarinet       Clarinet (whole tone) Wind  

60 WEnglishHorn    EnglishHorn (whole tone) Wind  

61 WFlute          Flute (whole tone) Wind  

62 WFrenchHorn     FrenchHorn (whole tone) Wind  

63 WMutedTrumpet   MutedTrumpet (whole tone) Wind  

64 WOboe           Oboe  (whole tone)          Wind  

65 WPiano          Piano   (whole tone) String  

66 WSaxophone      Saxophone  (whole tone) Wind  

67 WTrombone       Trombone  (whole tone) Wind  

68 WTrumpet        Trumpet (whole tone) Wind  

69 WTuba           Tuba (whole tone) Wind  

70 WTubularBellsOR TubularBells (whole tone) Percussion  

71 WVibraphone     Vibraphone (whole tone) Percussion  

 

72 WViolin       Violin (whole tone) String  



73 BambooChimesHit      BambooChimesHit      Percussion  

74 BongoSmall           BongoSmall           Percussion  

75 Castanets            Castanets            Percussion  

76 Celesta              Celesta              Percussion  

77 ClarinetBb           ClarinetBb           Wind  

78 CrumhornTenor        CrumhornTenor        Wind  

79 Cuica                Cuica                Percussion  

80 CymbalBowed          CymbalBowed          Percussion  

81 CymbalStruck         CymbalStruck         Percussion  

82 DoubleBassPizz       DoubleBassPizz       String Not tested 

83 EnglishHorn          EnglishHorn          Wind  

84 FluteFlutterTongued  FluteFlutterTongued  Wind  

85 FluteNoVibe          FluteNoVibe          Wind  

86 FrenchHorn           FrenchHorn           Wind  

87 Harp                 Harp                 String  

88 Harpsichord          Harpsichord          String  

89 LogDrum              LogDrum              Percussion  

90 Marimba              Marimba              Percussion  

91 OrganBaroquePlenum   OrganBaroquePlenum   Wind  

92 Piano                Piano                String  

93 RecorderBaroqueTenor RecorderBaroqueTenor Wind  

94 SaxAlto              SaxAlto              Wind  

95 SaxTenorGrowls       SaxTenorGrowls       Wind  

96 Snare                Snare                Percussion  

97 SteelDrum            SteelDrum            Percussion  

98 TamTam               TamTam               Percussion  

99 TambourinePop        TambourinePop        Percussion  

100 TempleBlock          TempleBlock          Percussion  

101 TrumpetBbHard        TrumpetBbHard        Wind  

102 TrumpetMuted         TrumpetMuted         Wind  

103 TubularBells         TubularBells         Percussion  

104 Tympani              Tympani              Percussion  

105 VibraphoneBowed      VibraphoneBowed      Percussion  

106 VibraphoneHardMallet VibraphoneHardMallet Percussion  

107 ViolinMartele        ViolinMartele        String  

[Lakatos 

2000] 

108 ViolinNoVibe         ViolinNoVibe         String  

109 bsn  bassoon  Wind  [Krumhansl 

1989] 110 can  cor anglais (tenor oboe)  Wind  



111 clarinette clarinette Wind Not tested 

112 clavecin   clavecin   String Not tested 

113 cnt  clarinet  Wind  

114 gtn  guitarnet (guitar / clarinet)  N/A Hybrid 

115 gtr  guitar  String  

116 hcd  harpsichord  String  

117 hrn  french horn  Wind  

118 hrp  harp   String  

119 obc  obochord (oboe / harpsichord)  N/A Hybrid 

120 obo  Oboe Wind  

121 ols  oboleste (oboe / celesta)     N/A Hybrid 

122 piano      piano      String Not teseted 

123 pianofrot  pianofrot  ? Not tested 

124 pno  piano  String  

125 pob  pianobow (bowed piano String  

126 sno  striano (bowed string / piano)  N/A Hybrid 

127 spo  sampled piano  String  

128 stg bowed string     String  

129 tbn  trombone       Wind  

130 tpr  trumpar (trumpet / guitar)     N/A Hybrid 

131 tpt  trumpet  Wind  

132 trompette  trompette  Wind Not tested 

133 vbn  vibrone (vibraphone / 

trombone)  

N/A Hybrid 

134 vbs  vibraphone  Percussion  

[McAdams et 

al. 1995] 

135 pbo ? ? Not tested 

 



TABLE A2. The list of 70 timbre descriptors and their references 

Group Subgroup Name Description 

NRGB energy 

CGSB spectral centroid (global mean spec) [cgsb] 

STDB spectral variation 

Spectrum 

VSPC spectral centroid (global mean spec) [vspc] 

NRGH spectral energy 

CGSH spectral centroid 

STDH spectral std 

DEVS spec deviation (of the harmonic computed from the global 

mean spectrum) 

DECS spec slope 

IPH something related to a group of spectral shape descriptors (*) 

NRGI mean of the instantaneous energy 

CGSMAX spectral centroid computed on the vector composed of the 

maximum amplitude [lin] of each harmonic over time 

CGSMOY spec centroid computed on the vector composed of the mean 

amplitude [lin] of each harmonic over time 

CGSRMS spec centroid computed on the vector composed of the rms 

amplitude [lin] of each harmonic over time 

CGSI mean of the instantaneous spec centroid [amp lin, freq lin] 

CGSIDB mean of the instantaneous spec centroid [amp dB, freq lin] 

CGSILO mean of the instantaneous spec centroid [amp lin, freq log] 

STDMAX spectral std computed on the vector composed of the 

maximum amplitude [lin] of each harmonic over time 

STDMOY spectral std computed on the vector composed of the mean 

amplitude [lin] of each harmonic over time 

STDRMS spectral std computed on the vector composed of the rms 

amplitude [lin] of each harmonic over time 

STDI mean of the instantaneous spec std [amp lin, freq lin] 

STDIDB mean of the instantaneous spec std [amp dB, freq lin] 

Harmonic 

[Peeters 

2000] 

Harmonic 

STDILO mean of the instantaneous spec std [amp lin, freq log] 

DEVMAX spectral std computed on the vector composed of the 

maximum of amplitude [dB] of each harmonic over time 

Harmonic2 

[Peeters 

2000] 

Harmonic 

DEVMOY spectral std computed on the vector composed of the mean of 



amplitude [dB] of each harmonic over time 

DEVRMS harmonic - spectral std computed on the vector composed of 

the rms of amplitude [dB] of each harmonic over time 

DEVI mean of the instantaneous spec deviation [amp lin] 

DEVIDB mean of the instantaneous spec deviation [amp dB] 

DECI mean of the instantaneous spec slope [amp lin] 

DECIDB mean of the instantaneous spec slope [amp dB] 

FLMAX spec flux using instantaneous centroid and cgsmax 

FLMOY spec flux using instantaneous centroid and cgsmoy 

FLRMS spec flux using instantaneous centroid and cgsrms 

FLI spec flux using instantaneous centroid and cgsi 

VSPH harmonic spectral deviation 

VSRATE speed of variation of the spectrum 

MAGCO sum of the variations of the instantaneous harmonic from 

global mean harmonics 

 

HAC harmonic attack coherence 

LTMR log-attack time from [rms] 

LTMM log-attack time from [max] 

LTMLR log-attack time from [smoothed rms] 

LTMLM log-attack time from [smoothed max] 

ITMPN1 effective duration 

ITMPN2 effective duration [norm by file length] 

ITMPN3 effective duration [norm by file length and f0] 

 

Envelope 

ITMPN4 effective duration [norm by file length and T] 

LAT log-attack time 

CGT temporal centroid 

STDT temporal std 

ED effective duration 

MAXIMUM maximum value 

MIX ed*cgt 

LDB rms value of the power spectrum 

LDBA rms value of the power spectrum [amp weighting dbA] 

LDBB rms value of the power spectrum [amp weighting dbB] 

LDBC rms value of the power spectrum [amp weighting dbC] 

Percussive 

[Lakatos 2000] 

CGS spec centroid of the power spec 



CGSA spec centroid of the power spec [amp weighting dbA] 

CGSB2 spec centroid of the power spec [amp weighting dbB] 

CGSC spec centroid of the power spec [amp weighting dbC] 

STD spec std of the power spec 

STDA spec std of the power spec [amp weighting dbA] 

STDB2 spec std of the power spec [amp weighting dbB] 

STDC spec std of the power spec [amp weighting dbC] 

SKEW skewness of the power spec 

KURT kurtosis of the power spec 

 

SLOPE slope of the power spec 

ACUM sharpness [Bismarck 74] 

FLUC fluctuation strength (in vacil) [Susini 00] 

Other 

ROUGH roughness (in aspers) [Aures 85]  

 

 


