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Abstract

In this paper we propose a new technique to build a complex resonator such as the body of a violin.

1 Introduction

An important element of a violin is its body, which
�lters vibrations that propagate from the string
through the bridge. In real-time synthesis of a vi-
olin, there is some diÆculty in modeling the body
because of a tradeo� between accuracy and compu-
tational cost. If all the resonances of the body are
accounted for by modeling each one with its own pair
of �lter poles, the computational cost is too high. On
the other hand, one cannot implement too few �lter
poles and neglect the large number of resonances, be-
cause the complex �ltering of the body contributes
strongly to the characteristic timbre of the violin.

2 Violin Body Resonances

The violin body acts as a resonator for the vibration
generated from the strings. The coupling of air cav-
ity modes and top and back plate modes produces
the complex �ltering which contributes strongly to
the characteristic timbre of the violin. At lower fre-
quencies (below 3kHz), the wood modes predomi-
nate, and at higher frequencies (above 3kHz) the air
modes predominate [HKW95].

The impulse response of a violin body is shown
in Fig. 1. The response was obtained by exciting
the body vertically with an impulse hammer in an
anechoic chamber. The bottom of the �gure shows
the frequency response. Note the high number of
high-frequency resonances.

2.1 Resonance Perception

At low frequencies, the ear is sensitive to the pre-
cise tuning of the resonant modes because its fre-
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Figure 1: (a) impulse response of a violin body. (b)
frequency response of a violin body.

quency resolution is high in this range. At higher fre-
quencies, however, the frequency resolution of the ear
is coarser, and a \reasonable" approximation of the
spectral envelope shape can be perceptually equiva-
lent, provided the time-domain characteristics (deter-
mined by resonance bandwidths and phases) are also
suÆciently similar perceptually.

3 Structure of the Model

Our body model is attached to the waveguide bowed
string model described in [SSW99]. In the body
model, second-order resonant �lters model the �rst
13 resonances (up to about 3200Hz), and a waveg-
uide mesh [VS93] is used to approximate the dense
modes of the violin body at higher frequencies. The



second-order �lters simulate primarily wood modes,
and the mesh simulates more air modes than wood
modes. As a result, a 3D waveguide mesh provides
the most accurate asymptotic mode density. How-
ever, it is worthwhile to consider whether the high-
frequency modes of a 2D mesh may be suÆcient psy-
choacoustically.

The bridge velocity calculated by the bowed
string model is fed to the resonant �lters and waveg-
uide mesh in parallel, and their outputs are added,
as shown in Fig. 2.
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Figure 2: Model Structure.

4 Analysis

The low-frequency resonances are identi�ed and sub-
tracted from the measured violin-body frequency re-
sponse as described in [KS96]. Using an iterative
Matlab program, the loudest resonances are identi�ed
and subtracted one by one until the remaining resid-
ual impulse response sounds like a noise burst. Figure
3 shows the impulse-response of the resonator-bank
and its residual, and Fig. 4 gives the same comparison
in the frequency domain. This residual impulse re-
sponse then becomes the target of a waveguide mesh
design.

Figure 3: Impulse Response of (a) Resonator Bank,
(b) Residual.

Figure 4: Frequency Response of (a) Resonator Bank,
(b) Residual.

5 Mesh Design

The goal of mesh design is to �nd a mesh having an
impulse response which sounds identical to the high-
frequency residual obtained after subtracting out the

deterministic low-frequency resonators. Due to psy-
choacoustic properties of hearing, instead of consid-
ering individual high-frequency modes, but we may
consider bands of high-frequency modes. A reason-
able choice is to group high frequency modes into crit-
ical bands of hearing according to the Bark [ZF90] or
ERB [Moo97] frequency scales. Matlab software for
this purpose may be found via [SA99]. Within each
band, statistically similar mode distributions can be
expected to sound musically equivalent.

Within each band, we wish to match statistics
of the mesh response to those of the violin body re-
sponse. We desire that they be \musically equiva-
lent" based on psychoacoustic principles. The rele-
vant parameters in each band include

� average mode spacing,

� average bandwidth (decay time),

� mode amplitude distribution, and

� mode phase distribution.

For further re�nement, the mode bandwidths within
each critical band may be characterized statistically
as a distribution also (e.g., having a mean and vari-
ance); however, our current model does not support
this level of detail.

By starting with mesh dimensions comparable
to those of a real violin body, we may expect it to
spontaneously have a similar mode spacing [Cre84,
HKW95]. Additionally, the mode phase should be
suÆciently randomized in such a mesh that it is not
necessary to explicitly approximate it.

The average absorption can be matched to ob-
tain a the same average decay time in each of sev-
eral high-frequency bands de�ning groups of high-
frequency modes.

Finally, the mode amplitude distribution can be
captured in a spectral envelope, computed, e.g., using
linear prediction [Mak75].

6 Simulation results

Figure 8 shows the results of the simulations for a vi-
olin E string (f0 = 659 Hz). The top picture displays
the waveforms observed at di�erent time intervals of
the outgoing velocity at the bridge point, i.e., the
waveforms that are entering the mesh and the res-
onators.

The �gures in the center display the outputs of
the resonant �lters and the mesh respectively, while
the �gure on the bottom displays the combination of
the mesh with the resonant �lters.
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Figure 5: Spectrogram of violin body impulse re-
sponse.

The inuence of the body model on the spectrum
of the bowed string is shown in �gure Fig. 9. It is
noticeable how the dimensions of the mesh produce
a frequency response that has a gap below 2000 Hz
and above 8000 Hz.

This hole is related to the fact that the mesh
models the high frequency air modes of the cavity.

7 Conclusions

In this paper, we proposed a computationally eÆ-
cient hybrid model of the violin body. The solution
adopted is low-cost without compromising perceptual
quality, making our body model suitable for real-time
implementation of violin synthesis. This technique
can be used to develop synthesis models for other
stringed instruments, and any instrument having a
complex resonator and a nonlinear excitation which
prevents use of commuted synthesis.
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Figure 6: Spectral power decay of violin body impulse
response in 6 bands.
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Figure 7: Energy Decay Relief (EDR) for violin body
impulse response in 6 bands.
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Figure 8: Waveforms of the velocity captured at dif-
ferent locations of the model. From the top: outgoing
string velocity at the bridge point, velocity output of
the resonant �lters, velocity output of the mesh and
total �nal velocity.
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Figure 9: Spectra corresponding to the waveforms of
�gure Fig. 8.


