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This paper reviews the popular methods and models used for the synthesis of the singing voice
discussng strengths and weaknesss of each technique. Then a brief review is given of research
on crossmodal visual/auditory perception of the human voice The paper concludes with
comments related to the singing synthesis g/stems discussed, addressng multi-modal perception,
audiomorphing, and the categorical perception of sound.

1 Introduction

The human voice is the most ubiquitous, flexible,
and general of acoustic instruments. We all have
one, yet only a few of us learn to “play” it with
proficiency as a musical instrument. Most
functions of this instrument we take for granted,
but huge regions of our brains are dedicated to
contralling and perceving the sounds made by it.
Even those people that never learn to use it
musically still are able to perform amazng feats of
imitation and flexihility with their voice The voice
can exact independent control acrossa broad range
of pitch, amplitude, brightness harmonicity, noise
amount, and spectral shape.

The voice @nnot be taken apart and studied
like most other instruments. We @nnot “build”
versions with small variations in the parameters to
observe the dfeds. We a@nnot try different
materials and structures, such as the violin maker/
player might do with different woaods, varnishes,
bracing structures, strings, bows, and rosins. The
true subtleties of a fine singing voice must be
studied, “in vivo,” if at al, and only with the
gracdful cooperation of the owner/builder/
player/instrument (all one in the same).

The attraction of composers to the human
voice instrument has a rich, long history. In
modern times, computer music composers have
time and again been attracted to vacal sounds and
processng. Part of this is due to the legacy of
computer music tods, with many of them arising
from the great speed labs of the world. But there
is more at work than the mere availability of tools.

Many historical dedronic audio effeds
devices intentionally mimic the human voice
(vocoders). Others ound vocal in some sense, by
the shee nature of one particular feature such as a
resonance that can be swept independently of the
source sound parameters (the wah-wah pedal).
One might exped that we wuld lodk to vocal
analysis/synthesis techniques to give us ideas for

new digital audio effeds, perhaps informing us as
to how to create the “perfect audiwrph.”

This paper will survey models, methods, and
systems for the analysis, synthesis, and processng
of the human voice It focuses on singing
synthesis and voicerdated tods which have found
use in computer music composition. The positive
and negative aspeds of each system or model will
be noted. Finally, areas of research and perception
of vocal sounds (and images) will be discussed.

2 Singing Voice M ethods, M odels,
and Systems

The voice has traditi onall y been viewed as a linear
sourceffilter system. That is, there are one or more
sources of sound, and one or more filters which
shape the spedrum of those sound sources. By
moving various articulators, we cange the ways
the sources and filters behave.

The voice source @n be daracterized as a
periodic source @rresponding to the oscill ating
voca folds, or a non-periodic source
corresponding to turbulent noise, or a mixture of
these. The voice system filter properties are
controlled by the shape of the vocal tract.

The spedrum of the voice is characterized by
resonant peaks caled formants. Figure 1 is a
spedrum corresponding to the vocal vowel /i / (as
in bed), showing harmonics of the voice source
outlining the peaks and valleys of the vocal tract
filter response.
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Figure 1. Voice spectrum for the vowel /i/ (asin beet),
showing harmonics and formant peaks.



The location and shapes of formant resonances are
strong perceptual cues that we use to identify
vowels and consonants. The most succesdul
systems capable of generating, reagnizing, or
flexibly modifying speed-like sounds, have
alowed flexible manipulation of the resonant
peaks of the spedrum, and of source parameters
(voice pitch, noise level, etc.).

2.1 Spectral Subband Vocoders

From the erly legacy of speed signal processng
came the powerful and flexible signal processng
techniques known as the spedral subband vocoders
(VOice CODERYS). Inthe channd vocoder [1] and
phase vocoder [2][ 3], the spedrum is broken into
sedions called subbands, and the information in
each subband is analyzed. The analyzed
parameters are then stored or transmitted for
remnstruction at another time or physical site.
The parametric data representing the information
in each subband can be manipulated, yielding
transformations guch as pitch or time shifting, or
spectral shaping.

The danne vocoder models only the time-
varying amplitude within each subband, and
typicall y uses between 10 and 30subbands to cover
the entire audible spedrum. Figure 2 shows a
block diagram of a channed vocoder.  This
architedure yidds well to implementation in
analog circuitry, and a number of analog hardware
devices were produced and sold as musical
instrument processng devices in the 197080's.
One attraction of these devices, as with other
sourcefilter models of the voice is that the source
can be replaced with arbitrary sounds, resulting in
talking cows, singing gutars, etc. This is called
cross-synthesis.

Sincethe dhannel vocoder explicitly makes an
asuimption that the signal being modeled is a
single human voice it does not generaize to
arbitrary sounds, and fails horribly when the
source parameters deviate from expeded
harmonicity, reasonable voice pitch range, etc.
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Figure 2. Block diagram of a channel vocoder
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The phase vocoder calculates and maintains
bath instantaneous magnitude and phase, and is
implemented using the Fast Discrete Fourier
Transform. Many subbands (sinusoidal DFT bins)
are typically used (on the order of hundreds to
thousands). Unlike the channel vocoder, the phase
vocoder does not perform an explicit sourcefilter
decomposition, and there is no parametric model
of the source  The phase vocoder does not strictly
asaime that the signal is geed, and thus can
generalize to aher sounds. For this reason, the
phase vocoder has found extensive use in computer
music composition.

By the nature of FFT processng; segmenting
the signal in blocks of many samples, then
analyzing it into an equal number of subbands, the
phase vocoder does nothing to make sonic data
more parametric. For composition, data reduction
or compresson is not necessarily agoal. However,
sound analysis gystems which in some way make
data parametric often make for good composition
systems, allowing manipulation of a relative few
parameters rather than thousands of numbers per
second. For anything other than simple time and
spedrum stretching, more processng must be done
on the raw spedra data yielded by the phase
vocoder.  We will discuss this further in the
section on spectral modeling systems..

2.2 Linear Prediction

Linear Predictive Coding (LPC) [4], as shown in
Figure 3, involves forming a digital filter that
predicts the next time sample from a linear
combination of a few previous smples. An error
signal is yieded which, if fed back through the
time-varying prediction filter, will yield exactly the
original signal. The filter modes linear
correlations in the signal, which correspond to
spedral features such as formants. The eror
signal models the input to the formant filter, and
typically is periodic and impulsive for voiced
speed), and noise-like for unvoiced speed. The
eror signal can be parametrically coded and
resynthesized, or modified befaesynthesis.
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Figure3. Alinear predictive digital filter.

The success of LPC in representing speet
signalsis largely due to the simil arity between the
sourceffilter decomposition yielded by the
mathematics of linear prediction, and the



sourceffilter model of the human vocal tract. The
introduction of LPC revolutionized speech
technology, and had a great impact on musical
composition as well [5][6][7]. The power of LPC
as a compositional tool stems from the ability to
modify the parameters before resynthesis. As with
the channel vocoder, the source can be replaced
with arbitrary sounds, allowing for cross synthesis.

In LPC, however, all spectral properties are
modeled in the filter. In actuality the voice has
multiple possible sources of non-linear behavior,
including source-tract coupling, non-linear wall
vibration losses, and aerodynamic effects. Due to
these deviations from the ideal source-filter model,
the result of analysigmodification/resynthesis
using LPC or a subband channel vocoder often
sounds artificial. One further problem with LPC is
that the least-squares method of determining the
optimal filter coefficients causes the designed filter
to match well at peaks, but less well at spectral
valleys (see Figure 1).

2.3 Frequency Modulation

Frequency Modulation (FM) involves modulating
the frequency of one oscillator (the carrier) with
the output of ancther (the modulator) to create a
spread  spectrum  consisting of  sidebands
surrounding the carrier frequency. For FM sound
synthesis, both carrier and modulator operate in
the audio frequency range. The most easily
described scheme for FM sound synthesisisthat in
which both the carrier and modulator oscillators
generate sinusoidal waveforms. In this case
sinusoidal sideband frequencies are generated at
the carrier frequency, the carrier frequency plus
and minus the modulation frequency, the carrier
freqguency plus and minus two times the
modulation frequency, and so on. As a rough rule
of thumb, the number of significant sidebands is
equal to the index of modulation (the ratio of
carrier frequency deviation to modulation
frequency) minus two.

FM sound synthesis as introduced by
Chowning [8][7], proved successful for the
synthesis of a variety of sounds, including the
synthesis of singing. By controlling the amount of
modulation, and using multiple carrier/modulator
pairs, spectra of somewhat arbitrary shape can be
congtructed.  This technique proved extremely
efficient for digita synthesis, yet sufficiently
flexible for music composition. In vocal modeling,
carriers placed near formant locations in the
spectrum are modulated by a common modul ator
oscillator operating at the voice fundamental
frequency. Figure 4 shows a block diagram of a
simple FM voice synthesizer.

In order to generate a harmonic voice
spectrum using FM  synthesis, the carrier
frequencies must be integer multiples of the
fundamental modulator frequency. For this
reason, it is impossible to generate vocal sounds
which smoothly vary arbitrarily from vowe to
vowel, or from pitch to pitch on a single vowel.
Also, there is no closed-form analysis technique
for identifying FM parameters to yidd an identity
resynthesis of an arbitrary sound.
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Figure4. FM voice synthesis block diagram.

2.4 FOFs

Formant Wave Functions (FOFs in French)
represent time-domain waveform models of the
impulse responses of individual formants [9].
These are characterized as a sinusoid at the
formant center frequency with an amplitude which
risss rapidly upon excitation and decays
exponentially. By describing a spectral region as a
windowed sinusoidal oscillation in the time
domain, FOFs can be viewed as a special type of
wavelet. The control parameters define the center
frequency and bandwidth of the formant being
modeled, and the rate at which the FOFs are
generated and added determines the fundamental
frequency of the sound. Figure 5 shows the
process of adding FOFs to create a voice
waveform.

The synthesis system for controlling FOFs was
dubbed CHANT, and has found application in
general music synthesis[10] aswell as synthesis of
the singing voice [7]. The parametric FOF
description of spectral features alows for
continuous manipulation of those features. As
such, the CHANT system provides a convenient
dual description of sonic features in terms of either
the time or frequency domain.

The basic FOF parameters, however, might
not be the most convenient for composers. Also,
FOFs do not directly allow for cross-synthesisto be
performed between two sounds, as is easily
accomplished using the channel vocoder or LPC.
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Figure5. Three FOFs (top), added and overlapped at a periodic

rate, generate a voice waveform and spectrum.

2.5 Formant Filter Models

Semnd order resonant filters can be used to model
formants diredly [11][12]. An attractive feature of
formant synthesizers is that Fourier or LPC analysis
can be used to automatically extract formant
frequencies, bandwidths, and source parameters from
recrded speed. Computer music composers have
usedformant vocal models for composition [7].

The Speet Transmisson Laboratory of the
Swedish Royal Institute of Tedhnology created the
MUSSE DIG (MUsic and Singing Synthesis
Equipment, DIGital version) [13]. This system has
been used in singing synthesis [14], for studying
performance synthesis-by-rule [7], and has bee
adapted for real-time control [15].

Formant filters provide parametric control over
what might be the most “speedlike’ spedral feature,
however, the assumption is gill one of a drictly
linear model. Speet and singing researcher Johan
Sundberg has often been heard to say “none of us has
ever seen a formant,” implying that there is much
more to the voice than a simple linear model.

2.6 Sinusoidal Modéds

As noted in Sedion 2.1, smply performing a
Fourier transform on speet data does not yield a
parameterization which is useful beyond simple pitch
and time manipulations. Sinusoidal speedt
modeling [16] uses Fourier analysis to locate and
track individual sinusoidal partials in the voice
signal. Individual trgjedories (tracks) of sinusoidal
amplitude, frequency, and phase as a function of
time are etracted from the time varying peaks in a

Figure 6. Formant synthesizer block diagram.

series of Short Time Fourier Transforms (STFT). To
help define tracks, heuristics regarding physica
systems and the voicein particular are used, such as
the fact that a sinusoid should not appear, disappear,
or change frequency or phase instantaneously.
The sinusoids can be resynthesized from the
track parameters, after modification or coding, by
additive synthesis. Noise @n be treated as rapidly
varying sinusoids, or explicitly as a non-sinusoidal,
stochastic component [17]. The technique of
modeling the deterministic  (sinusoidal) and
stochastic (noise) components sparately is called
Spedral Modeling Synthesis, and has found use in
music composition. Figure 7 shows a deterministic/
stochastic decomposition of a sound wave.

2.7 Acoustic Tube/Physical Models

Acougtic tube models sSmulate the vocal tract
transfer function by solving the one dimensional
wave ajuation inside a smoathly varying tube. The

one dimensional approximation is justified by noting
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Figure 7. A sound waveform (upper), the purely
deterministic part as modeled by sinusoids
(center), and the stochastic residual (lower).
(courtesy X. Serra)



that the length of the vocal tract is sgnificantly
larger than any width dimension, and thus the
longitudinal modes dominate the resonance structure
up to about 4000Hz. Modal standing waves in an
acoustic tube @rrespond to the formants. Early
speedr modding work at Bell Labs included the
acoustic tube model of Kelly and Lochbaum [19].
The basic Kelly-Lochbaum modd critically samples
space and time by approximating the smoath vocal
tract tube with cylindrical segments equal in length
to the distance traveled by a sound wave in one time
sample. Figure 8 shows a smoath acoustic tube, the
sampled version of that, and a ladder filter model of
the sampled tube, with Kelly-Lochbaum scattering
matrix operations at the junctions of adjacent tube
sections.
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Figure 8. Smooth acoustic tube, a sampled version,
and a waveguide ladder filter smulation.

The SPASM and Singer [19] systems are based
on a Kély-Lochbaum physical model of the vocal
tract filter, motivated by the waveguide formulation
[20]. The SPASM modd is a dired descendent of
the Kely-Lochbaum modd, but with many
enhancaments, such as a nasa tract, modeling of
radiation through the throat wall, various deady and
pulsed noise sources [21], and real-time @ntrols.
The SPASM/Singer moddl also adds natural inertial
parameters to the basic acoustic tube model, yielding

interpolations from shape to shape automatically.

Maeda's [22] acoustic tube model numerically
integrates the wave ejuation using the redangular
method in space and the trapezoidal rule in time.
Wall losses are also modeled, and an articulatory
layer of control modifies the basic tube shape from
higher-order descriptions like tongue and jaw
position. Carre's [23] modd is based on Distinctive
Regions (DR) arising from sensitivity analyss,
noting that movements in particular regions of the
vocal tract affed formant frequencies more than
movements in others. Liljencrants [24] investigated

an undersampled acoustic tube modd and derived
rules for modifying the shape without adding
unnaturally to the energy contained within the vocal
tract. Acoustics researchers in Helsinki [25 have
used fractional sample interpolation and truncated
conical tube segments to derive an improved version
of the Kellylochbaum model.

2.8 Model Variantsand Other Systems

Pabon [26] has constructed a singing synthesizer,
with real-time formant control via spedrogram-like
displays called phonetograms, and source waveform
synthesis using FOF-like mntrols. Titze and Story
[27] have produced a super-computer tenor called
"Pavarobdti,” which is used for studying many
aspeds of the voice including advanced physica
models of normal and pathological vocal folds.

Ken Lomax at Oxford University, and the
Lyricos projed at Georgia Tech have mnstructed
systems based on spedral templates, using spedral
modeling techniques. Lomax [28] has tackled the
difficult problem of characterizing, archiving, and
resynthesizing the unique voices and singing styles
of famous sngers. The Lyricos [29] projed dealt
with synthesis of arbitrary segments of singing from
a small sat of example sounds. One additional
spedral-template-based projed involved the aoss
synthesis of analyzed soprano and counter-tenor
singing, to create a virtual castrato singer for the
movie “Farinelli (I Castrato)” [30].

3 Spectral and Physical M odels

Synthesis models can be loasely broken into two
groups. Spedral models, which can be viewed as
based on perceptual mechanisms, and physica
models, which can be viewed as based on production
medhanisms. Both physical and spedral models
have merit, and one or another might be more
suitable given a spedfic goa and st of
computational resources.

Of the models and techniques discussed abowe,
the spedrall y-based models include FM, FOFs, phase
and channe vocoders, and sinusoidal models.
Acoustic tube models are physically-based, while
formant synthesizers are spedral models, but could
be dasdfied as pseudo-physica becuse of the
sourcefilter decomposition. LPC can be interpreted
in threeways, as a least-squares linear prediction of
the time domain waveform, as a least squares
matching processon the spedrum, and as a source-
filter decomposition. Therefore, LPC is bath a
spedral and pseudo-physical model, but not strictly a
physicalk moded becuse wave variables are not
propagated dredly in the smulation, and no
articulation parameters go into the basic model. LPC
can be mapped to afilter related to the acoustic tube



model [31], thus creating a bridge between the
spectral and physical camps.

The main attraction of physical models is that
the @ntrol parameters are those that a human uses to
control his’her own vocal system. As such, some
intuition can be brought into the design and
composition processes. Another motivation is that
time-varying model parameters can be generated by
the model itsdlf, if the model is constructed so that it
sufficiently matches the physical system.

Disadvantages of physica models are that the
number of control parameters can be large, and while
some parameters might have intuitive significance
for humans (jaw drop), others might not (spedfic
muscles controlling the vocal folds).  Further,
parameters often interact in non-obvious ways.
Finaly, in general there ist no exact methods for
analysisfesynthesis using physical models.

Spedral models, by virtue of being based on
frequency domain features, are undeniably related to
some aspeds of the human perceptua medhanism.
The mchlea & frequency transformer, the tonotopic
mapping of the auditory cortex, etc. al closaly relate
to the Fourier Transform. Indeed frequency domain
representations have proven the best spaces © far in
which to talk about “audionorphing.”

But vocoders, FFTs, and time-varying sinusoidal
tracks do not actually match any known structures in
the auditory system. There are no sinusoids in the
human brain, no Hanning windows, and no huffers
in convenient lengths of powers of two. There are
proponents of the (dtill hotly debated) “motor theory
of speed perception,” which assrts that we use
articulatory gestures diredly to perceive speed
sounds. The parameter spaces yielded by spedrally
based systems are not necessarily the most natural
ones for composition, manipulation, reagnition,
compresson, or the study of perception. Much must
be added to the parameters of vocoders, or sinusoidal
models, to make them truly useful. Much of this
mapping and parameterization is dill unknown, but
it remains an exciting area for future research.

4 Faces, Lips, and Voice Perception

An interesting area of research and artistic endeavor
involves facial animation coupled with voice
synthesis. This is of interest perceptualy because
humans use a significant amount of lip reading in
understanding speetq and singing.  The two
modaliti es compliment each other, with information
that is difficult to discern using only one sense often
disambiguated by the other. However, interesting
work has been done to investigate @ses where the
two sensory modaliti es disagree[32]. Work has been
done by Massaro [33] and others [34], employing
facial animation to study coupling of visual and

auditory  information in human
understanding.

Musically, we know that the face of the singer
can carry even more information about the meaning
of music than the actual text being sung [35], further
motivating the mmbination of facial animation with
singing synthesis. Work with simultaneous analysis
of audio and facial video has alowed signa
processng to be performed on the speed sound, in
conjunction with image processng on the video,
yielding convincing faces sying things they never
actually said in real life [36].

speet

5 Morphing, Genus, and

Categorical Perception

This final section will briefly address the following:

* Is the voice itsdf, or voice analysis/synthesis/
modeling, the placeto lodk for the perfed audio
morph?

e What is an audio morph anyway? Is it
appropriate to take a term, concept, etc. from
one sensory modality (or media sub-discipline)
and carry it directly into another?

* |Is there something more interesting to do
compositionally with voice modeling systems
beyond pitch shifting, time shifting, and cross
synthesis?

Even the most cursory search of the speed literature
yields many papers on vowd spaces, and on the
categorical perception of voweds. Exciting recent
work by Kuhl [37] and others has used crosscultural
infant studies to investigate the process of learning
and acquisition of vowd templates (these templates
to be used later for adult speed production and
reagnition). It is clear from this work and many
vowed perception studies is that there is not a smoath
continuum in any known vowel space and the
perception of vowe s tends to be ategorical. This of
course makes ense; if we areto understand speed at
al, we must “round” sounds to a nearby vowd,
otherwise all sounds which do not match exactly our
internal templates will not be perceived as speech.
The isaue of categorical perception goes to ane
of the fundamental issues of vocal modeling, vocal
processng, the use of voice-based computer models
to process arbitrary sounds, and computer music
composition in general.  Researchers designing
models, systems, and tods for audio synthesis and
manipulation often make daims such as “we will be
ableto create entirely new instruments, not subjed to
the restrictions of existing acoustic instruments,” or
“we will be able to synthesize an instrument that is
halfway between instrument-A and instrument-B.”
This author has, of course, made such claims. Let's



briefly examine those isaues, entirely new sounds,
sounds halfway between two known sounds, and
sounds which smoathly vary from one known sound
to another.

One learns in working with synthesis tods that
it is very difficult, if not impossble, to create
“entirely new sounds.” Sounds tend to sound “like”
something. This again seams to ke an artifact of the
necessties of our linguistic processng systems. It is
more likely that we will generate something that
listeners describe as “a trumpet-like thing with too
much amplitude modulation,” than to generate
something that illi cits a description of “wow, that's
half-way between an oboe and a trumpet.”

Even synthesizing a “perfed” vocal spedrum,
but omitting random and periodic pitch deviation,
causes the perception to stray from that of a voice
Likewise, those instruments that are more often
described as “singing,” or “voicdike’; the vialin, the
Theremin(oVox), some wind instruments; have those
attributes related to the fine pitch and amplitude
control that are most typical of the human voice.

The term “audio morph,” has been applied to
trangitions between two instruments, between two
vocal vowels, between two musical phrases, and even
between the compositional styles of two composers.
None of these are reall y equivalent to a morph in the
graphics domain. There is a known fact in topology
that the only morphs that are mathematically well
posed are those that take place between two oljeds
of the same geometric genus. This doesn't stop
anyone from trying to morph a sphere (or human
head) into a coffee @wp, with posshly interesting
artistic results. But geometric morphs that do not
obey this basic rule are not posshle to pose or
compute uniquely, and generally don’t tend to work
well perceptually.

In the audio domain, we have an intuitive (or
experienced) fed that it would be easier to move
smoacthly from clarinet to trumpet to flute to vaice
than it would be from piano to vaceto snare drum to
duck-quack. Indedd, the darinet, trumpet, flute, and
voice share much in common: a non-linear periodic
oscillator driven by breath pressure, resonator
structure, components of harmonicity and noise, etc.
But there are fundamenta differences as well: the
voice has independent pitch and resonance @ntrol,
and the “reals’ are different for each of those wind
instruments (air for the flute, inwardly beating wood
for the daringt, outwardly beating lips for the
trumpet, etc.).

There are some fundamental physical attributes
of musical instruments which seem amost the
parallel of the topological genus. There are also
spedral features and attributes that we an use to say
that two sounds are more or less émilar. But there
are aso perceptual categories, groups, and
boundaries which challenge the notion of an ideal

audio morph. The author feds that the profound
linguigtic nature of human perception, new
knowledge of physical models of sound producing
objeds, and new studies of timbre in general, should
all motivate the questions to be asked in searching
for audiomorphs and new digital audio effects.

6 Conclusions

There are many ways to analyze, synthesize, and
process vocal sounds. Systems intended for speed
coding and compresson have had a great influence
on computer music synthesis and composition.
Spedral models, physical models, and others al have
their place if nothing other than to pose interesting

guestions about sound, sound sources, and
perception.
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