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ABSTRACT

“Playability” is measured for variations in a bowed-string simu-
lation model. The variations studied are (1) the effect of torsion
waves, and (2) the effect of the choice of friction model. It is found
that (1) elimination of torsion-wave simulation does not degrade
playability, and (2) the more recently developed “plastic” bowed-
string friction model, in which the frictional force is a function of
temperature, is more “playable” than prior friction models which
depend only on relative sliding velocity.

1. INTRODUCTION

Time-domain models of bowed-string dynamics have achieved a
level of completeness that makes them potentially suitable for an-
swering fundamental questions about the effects of various phys-
ical parameters on the “playability” of a bowed-string instrument
[1, 2], [3], [4, 5]. Such information could be of great interest to
the instrument maker and scientifically inclined performer. Addi-
tionally, digital sound synthesis algorithms have been developed
based on these models [6, 7]. Since the goal in sound synthesis is
to provide the most cost-effective computation for a given quality
level, it is of great interest to determine the relative value of the
various model components for synthesis (both on the sound and
on the “playability” of the “virtual instrument”). Questions of this
nature can also be addressed using computer-based time-domain
simulation models.

In this paper, we present results of an initial study aimed at
evaluating (1) the importance of including explicit simulation of
torsion (twisting) waves on the string, and (2) the importance of
using more realistic friction models in the simulated bow-string
interaction.

In Section 2, we discuss the quality metric used, and Section
3 summarizes the simulation model. Section 4 presents the simu-
lation results, and Section 5 summarizes our conclusions.

2. QUALITY MEASURES

The quality of a bowed-string instrument is more reliably deter-
mined by the player than the listener [5]. While the “tone” is
clearly an important component of quality, a “poor tone” can be
compensated in many ways. A more intrinsic quality which is less
easily compenated is the “playability” of the instrument.

2.1. Evaluating Playability

“Playability” can be loosely defined as the “volume” of the mu-
tidimensional parameter space in which “good tone” is produced.

The “playability” evaluation technique, described in [3, 4, 5],
includes two high-level components: (1) a bowed-string software
model [2] which is calibrated by measured and/or inferred physical
data, and (2) an algorithm for evaluating the quality of the model’s
output [3, p. 149],[5].

In this particular study, we define playability in terms of the
minimum and maximum bowing force over a range of bowing po-
sitions for steady bowing (constant bow force and velocity). The
type of bowed-string motion is automatically classified [3] for a
reasonable range of bow forces and positions along the string, and
these are used to produce a kind of empirical “Schelleng diagram”
[8]. As discussed in the following subsection, a Schelleng diagram
displays at a glance the region of “good behavior” for the bowed
string model,i.e., the region of the parameter space in which sim-
ple “Helmholtz motion” is obtained.

2.2. Schelleng Diagram

Minimum  bow force

Maximum bow force

Sul ponticello

Brilliant

Sul tasto

0.01 0.02 0.04 0.06 0.1

0.001

0.1

1

Relative position of bow, ß

R
el

at
iv

e 
fo

rc
e

RAUCOUS

NORMAL

0.2

0.01

HIGHER MODES

Figure 1:Theoretical Schelleng diagram.

Figure 1 shows the classical “Schelleng diagram” [9] indicat-
ing the theoretical minimum and maximum bow force as a function
of bow position along the string. Between the bow-force limits,
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“Helmholtz motion” is possible. Helmholtz motion is character-
ized by a single “corner” traveling back and forth on the string
under an approximately parabolic envelope. While the corner is
between the bow and the nut or finger, the string is sticking to the
bow. When the corner is on the shorter part of its journey, between
the bow and the bridge, the string is slipping under the bow. This
fundamental picture of normal bowed-string behavior was first dis-
covered and described by Helmholtz in the mid-nineteenth century
[10]. Further details of possible bowed-string motion are summa-
rized in [5], and a review of theoretical models can be found in
[11].

Below the minimum bow force, a second Helmholtz corner
is likely to appear (or more), due physically tomultiple slipsper
period. This regime is is often referred to as “surface sound” and
is common in “sul ponticello” playing.

Above the maximum bow-force, the Helmholtz corner may
not be strong enough to initiate slipping when passing the bow
toward the bridge. In this case, the time-keeping function of the
traveling corner may be disrupted, leading to aperiodic, even “rau-
cous” sound.

Part of the “playability” of a bowed-string instrument is the
ease with which Helmholtz motion can be achieved. Skilled play-
ers strive to achieve Helmholtz motion as quickly as possible in
“smooth” playing [12]. It is even possible to hit Helmholtz motion
immediately on the first period, which is especially desirable on a
double bass for which a single period can be tens of milliseconds
long.

3. BOWED STRING SIMULATION MODEL

The bowed-string simuation model, described in [2, 3, 5], includes
simulation of transverse waves on a stiff string in the plane of the
bow, torsion waves, constant-Q string resonances for the transverse
and torsional waves, and bow-string interaction by means of one
of a variety of friction models.

All simulations were run on a Pentium II 333Mz. We noticed
that different computers gave slightly different results, due pre-
sumably to the extreme sensitivity of the results to precision in
“chaotic” regimes.

All runs in this study simulate a celloD string with bend-
ing stiffnessB = 0.0004 N m2, whereB is the coefficient of the
fourth derivative of string displacement with respect to position in
the wave equation for stiff vibrating strings [3, p. 133]. The sam-
pling rate in all cases was200 kHz.

In all simulations the string, starting from rest, is excited by a
constant bow velocityvb of 0.05 m/s.

In each computed Schelleng diagram, the bow forcefb is var-
ied between0.005 and5 N, and the normalized distanceβ of the
bow from the bridge is varied between0.02 and0.4 (where0.5
would be at the string midpoint).

The torsional wave speed is5.2 times the transverse wave
speed; the transversal and torsional impedances are0.55 and1.8
kg/s, respectively. At the nut and bridge side, transversal and tor-
sional wave losses are modeled by reflection functions with con-
stant Q-factors of500 and 45, respectively. These values were
measured on a nylon-core cello D string tuned to 147 Hz [13].

Three friction models were compared [14]. For convenience,
we will refer to them asexponential, hyperbolic, andplastic.

In the first two, the coefficient of friction depends only on slid-
ing speed. The third introduces dependency on temperature, which
in turn gives hysteresis in the friction curve.

The exponential model is given by [14]

µ = 0.4 e
v−vb
0.01 + 0.45 e

v−vb
0.1 + 0.35

wherev andvb represent the velocity of the string and the bow,
respectively. This model fits a sum of two exponentials to fric-
tion measurements made during steady sliding. As a result, any
dynamic behavior is neglected in the establishment of frictional
force after a velocity change.

The hyperbolic model for the coefficient of bow-string friction
is given by

µ = µd +
(µs − µd)v0

v0 + v − vb

wherev, vb andv0 are the string velocity, bow velocity and ini-
tial bow velocity, respectively, andµd = 0.3 andµs = 0.8 are
the dynamic and static coefficients of friction, respectively. This
model has been used for many years as a convenient mathematical
approximation which yields closed-form results for the bow-string
interaction [1, 2, 3].

The plastic friction model is given by [14]

µ =
Aky(T )

N
sgn(v)

whereA is the contact area between the bow and the string,N is
the normal load, andky(T ) is the shear yield stress as a function
of temperatureT . The temperatureT of the shearing rosin layer

can be estimated from the current sliding velocityv by passing
it through an appropriate linear filter [14]. Here, the rosin is mod-
eled as exhibiting “plastic” deformations at the bow-string contact.
Since there is a time delay associated with heat flow, the plastic
model exhibitshysteresis, unlike the other two friction models.

4. RESULTS

The simulation results are summarized as follows. First, we con-
sider the effect of torsion waves for the plastic friction model (which
is believed to be the most physically accurate). Next, we look at
the other choices of friction model.

4.1. Effect of Torsion-Wave Simulation on Playability

Figure 2 shows the empirical Schelleng diagram obtained by run-
ning the simulation with the plastic friction model installed. The
darker shaded region including the squares is defined as the “play-
able” region of the parameter space, where Helmholtz motion is
established. The region including the circles is the one in which
multiple slips are established. We see that there is good qualitative
agreement with the theoretical Schelleng diagram, as desired and
expected.

Figure 3 shows the same case of Fig. 2 except without in-
cluding simulation of torsional waves. We find that the playabil-
ity region is not altered very much when torsional waves are re-
moved. Looking only at the Helmholtz region, there are 65 pixels
of Helmholtz-motion in Fig. 2, and 63 in Fig. 3. On the whole, the
results are fairly comparable. However, the Helmholtz region is
more contiguous without torsion waves. Evidently, torsion waves
can reflect at a “bad time” so as to disturb the Helmholtz motion,
as indicated by the ’◦’ amidst the ’2’s in Fig. 2.

The good news for synthesizer builders is that the added ex-
pense of torsional wave simulation (which basically adds a coupled
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Figure 2: Measured Schelleng diagram for the plastic friction
model case. High quality Helmholtz motion is indicated by open
squares (2), and multiple slipping is plotted using open circles (◦).
All other symbols denote generally less desirable modes of string
motion.

“second string”) does not appear to improve playability. Since tor-
sion waves are not prominent in the radiated sound either, it seems
warranted to leave them out of synthesis models, even in the high-
est quality instances.

4.2. Effect of the Bow-String Friction Model

Up to now we have only looked at the plastic friction model which
is believed to be the most accurate physically. We now look at the
effect of using the older simpler models labeled “exponential” and
“hyperbolic” above.

4.2.1. Exponential Friction Model

Figure 4 shows the Schelleng diagram obtained using the classic
exponential friction model with torsion-wave simulation included.
We see that the plastic friction model (Fig. 2) “plays better” close
to the bridge, and it has a larger region of Helmholtz motion, es-
pecially when bowing somewhat away from the bridge. The com-
bined areas of Helmholtz and multiple-slipping motion, however,
are somewhat larger with the exponential friction model.

Figure 5 show the exponential friction case with torsion-wave
simulation removed (completely). As in the plastic friction-model
case, the playability is comparable, and arguably even improved.
Note the greater “reliability” of playing near the upper bow-force
limit. While there are 51 Helmholtz pixels in the full-simulation
case, and only 47 in the case without torsion simulation, the Helm-
holtz region is more contiguous and solid, having fewer interior
pitfalls.

4.2.2. Hyperbolic Friction Model

Figure 6 and Figure 7 show the Schelleng diagram obtained by
running the simulation using the hyperbolic friction model. The
results are quite similar to the preceding exponential model case.

B
ow

 fo
rc

e 
(lo

g1
0)

Bow position (log10)

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

-1.5

-1

0

0.5

1

-0.5

1

Figure 3: Measured Schelleng diagram for the plastic friction
model case, with torsion-wave simulation removed. As before,
classic Helmholtz motion is indicated by ‘2’, and multiple slip-
ping by ‘◦’.
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Figure 4:Measured Schelleng diagram for the exponential friction
model case.

5. CONCLUSIONS

The simulations indicate that eliminating torsion waves from the
model does not degrade playability, and the playable region tends
to become somewhat more convex. These results suggest that
bowed-string synthesizers which neglect torsion wave simulation
should not be negatively impacted by this approximation.

The simulations also indicate that the more physically accurate
temperature-dependent friction model improves playability rela-
tive to the previously used velocity-dependent friction models. Since
one of the main distinguishing features of the temperature-dependent
model is hysteresis, perhaps it will be possible in future work to
devise simplified hysteretic friction models which can increase the
playability and reduce computational expense, taking the present
model as a starting point.

It is important to stress that playability has been examined only
for steady bowing with the string starting from rest. Some addi-
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Figure 5:Measured Schelleng diagram for the exponential friction
model case, no torsion waves.

B
ow

 fo
rc

e 
(lo

g1
0)

Bow position (log10)
-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

-1.5

-1

0

0.5

1

-0.5

1

Figure 6:Measured Schelleng diagram for the hyperbolic friction
model case.

tional simulations were tried in which the string was pre-initialized
with Helmholtz motion, and the impact of torsion waves on playa-
bility was found to be similar to the steady-bowing case reported
here. The results might differ, however, in cases not tried here,
such as when simulating more realistic bowing transients.
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Figure 7:Measured Schelleng diagram for the hyperbolic friction
model case, no torsion waves.
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