// @title amplitudeSpectrumTracker.ck // @author Chris Chafe (cc@ccrma), Hongchan Choi (hongchan@ccrma) // @desc A starter code for homework 5, Music220a-2012 // @note amplitude/spectrum tracking using UAna ugens // @version chuck-1.3.1.3 / ma-0.2.2c // @revision 1 // IMPORTANT NOTE: this patch is designed to use microphone. // If you're using speakers and your microphone at the same time, // you might experience serious feedback. Make sure to use // the headphone or earbuds to avoid it. // pipe input into analysis audio graph: // track amplitude for gain of a resonant filtered-noise // frequency will track centroid of the input spectrum adc => FFT fft =^ RMS rms => blackhole; fft =^ Centroid cent => blackhole; // setup FFT: choose high-quality transform parameters 4096 => fft.size; Windowing.hann(fft.size() / 2) => fft.window; 20 => int overlap; 0 => int ctr; second / samp => float srate; // actual audio graph and parameter setting // NOTE: gain 'g' prevents direct connection bug adc => Gain g;// => dac.left; // resonant low-pass filtered noise Noise n => ResonZ r => dac;//.right; // initial gain, quality(Q) and frequency for resonz 0.0 => r.gain; 10 => r.Q; 60 => Std.mtof => r.freq; // instantiate a smoother to smooth tracker results (see below) Smooth sma, smf; // set time constant: shorter time constant gives faster // response but more jittery values sma.setTimeConstant((fft.size() / 3)::samp); smf.setTimeConstant((fft.size() / 8)::samp); // setGainQAndFreq() spork ~ setGainQAndFreq(); fun void setGainQAndFreq() { while (true) { // apply smoothed values r.gain(sma.getLast()); // apply smoothed value to gain r.Q(10.0 + 30.0 * sma.getLast()); // apply smoothed value to Q r.freq(smf.getLast()); // apply smoothed value to freq 1::samp => now; } } // main inf-loop while(true) { // hop in time by overlap amount (fft.size() / overlap)::samp => now; // then we've gotten our first bufferful if (ctr > overlap) { // compute the FFT and RMS analyses rms.upchuck(); rms.fval(0) => float a; Math.rmstodb(a) => float db; // boost the sensitity 30 + db * 15 => db; // but clip at maximum Math.min(100, db) => db; sma.setNext(Math.dbtorms(db)); // compute spectral centroid cent.upchuck(); cent.fval(0) * srate / 2 => float c; // then convert it to MIDI pitch c => Math.ftom => float p; // minus a major third -3 +=> p; // set lower boundary: prevents note too low Math.max(20, p) => p; // new freq if not noise if(db > 10.0) { smf.setNext(Math.mtof(p)); } } ctr++; } // @class Smooth // @desc contral signal generator for smooth transition class Smooth { // audio graph Step in => Gain out => blackhole; Gain fb => out; out => fb; // init: smoothing coefficient, default no smoothing 0.0 => float coef; initGains(); // initGains() fun void initGains() { in.gain(1.0 - coef); fb.gain(coef); } // setNext(): set target value fun void setNext(float value) { in.next(value); } // getLast(): return current interpolated value fun float getLast() { 1::samp => now; return out.last(); } // setExpo(): set smoothing directly from exponent fun void setExpo(float value) { value => coef; initGains(); } // setTimeConstant(): set smoothing duration fun void setTimeConstant(dur duration) { Math.exp(-1.0 / (duration / samp)) => coef; initGains(); } } // END OF CLASS: Smooth