// @title amplitudeFrequencyTracker.ck // @author Chris Chafe (cc@ccrma), Hongchan Choi (hongchan@ccrma), Reza Payami (rpayami@ccrma) // @desc amplitude/frequency tracking using UAna ugens and Sampler // @version chuck-1.3.1.3 / ma-0.2.2c // @revision 1 // IMPORTANT NOTE: this patch is designed to use microphone. // If you're using speakers and your microphone at the same time, // you might experience serious feedback. Make sure to use // the headphone or earbuds to avoid it. // pipe input into analysis audio graph: // track amplitude for gain of an FM patch // frequency will be max bin amplitude from the spectrum //Please change this to point to a proper path me.sourceDir() => string path; adc => FFT fft =^ RMS rms => blackhole; // setup FFT: choose high-quality transform parameters 4096 => fft.size; Windowing.hann(fft.size() / 2) => fft.window; 20 => int overlap; 0 => int ctr; second / samp => float srate; // actual audio graph and parameter setting // NOTE: gain 'g' prevents direct connection bug adc => Gain g;// => dac.left; // creating hammond organ-like FM instrument SndBuf sampler; path + "/sample.wav" => string _file; _file => sampler.read; cherr <= "[score] SndBuf: " <= _file <= IO.newline(); sampler => Envelope env => dac;//NRev rev => dac; 10::ms => env.duration; // instantiate a smoother to smooth tracker results (see below) Smooth sma, smf; // set time constant: shorter time constant gives faster // response but more jittery values sma.setTimeConstant((fft.size() / 2)::samp); smf.setTimeConstant((fft.size() / 5)::samp); // setGainAndFreq() spork ~ setGainAndFreq(); fun void setGainAndFreq() { while (true) { env.target(sma.getLast()); Math.ftom(smf.getLast()) / 127 * 0.5 => sampler.rate; 1::samp => now; } } // main inf-loop while(true) { // hop in time by overlap amount (fft.size() / overlap)::samp => now; // then we've gotten our first bufferful if (ctr > overlap) { // compute the FFT and RMS analyses rms.upchuck(); rms.fval(0) => float a; Math.rmstodb(a) => float db; // boost the sensitity 30 + db * 15 => db; // but clip at maximum Math.min(100, db) => db; sma.setNext(Math.dbtorms(db)); 0 => float max; 0 => int where; // look for a frequency peak in the spectrum // half of spectrum to save work for(0 => int i; i < fft.size()/4; ++i) { if(fft.fval(i) > max) { fft.fval(i) => max; i => where; } } // get frequency of peak (where $ float) / fft.size() * srate => float f; // then convert it to MIDI pitch f => Math.ftom => float p; // plus a major third 4 +=> p; // set lower boundary: prevents note too low Math.max(20, p) => p; // new freq if not noise if(db > 40.0) { smf.setNext(Math.mtof(p)); } } ctr++; } // @class Smooth // @desc contral signal generator for smooth transition class Smooth { // audio graph Step in => Gain out => blackhole; Gain fb => out; out => fb; // init: smoothing coefficient, default no smoothing 0.0 => float coef; initGains(); // initGains() fun void initGains() { in.gain(1.0 - coef); fb.gain(coef); } // setNext(): set target value fun void setNext(float value) { in.next(value); } // getLast(): return current interpolated value fun float getLast() { 1::samp => now; return out.last(); } // setExpo(): set smoothing directly from exponent fun void setExpo(float value) { value => coef; initGains(); } // setTimeConstant(): set smoothing duration fun void setTimeConstant(dur duration) { Math.exp(-1.0 / (duration / samp)) => coef; initGains(); } } // END OF CLASS: Smooth //////////////////////////////////