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Surface electromyography (sEMG) is a technique for measuring the electrical activity of muscles and is
often used as a biofeedback tool. However, challenges associated with the typically visual display of
sEMG data have motivated researchers to find non-visual ways of displaying sEMG data, and parameter-
mapping sonification has been explored in order to present sEMG data acoustically. Parameter-mapping
sonification is a technique that involves mapping values in a data set to acoustic properties of sound.
Sonification of EMG data has shown potential for identifying musculoskeletal disease and improving ath-
letic and exercise performance. However, many sonification designs to date have not been systematically
evaluated and there have been few quantitative approaches to objective comparisons of sonification para-
digms. In this study, we performed a quantitative comparison of different sonification designs in order to
test our hypothesis that different sonification designs may be better suited to different tasks. Thirty-six
participants (ages 18–31, 14 male) who volunteered to listen to the sEMG sonifications created for this
studywere asked to identify two different features of the data:muscle activation time andmuscle exertion
level. Their responses were analyzed in order to determine the effect of sonification design on listener per-
formance. Results indicated that having the sonifications spatialized resulted in the best performance for
both tasks. However, different sonification designs resulted in the best performance for the muscle
activation time estimation task (Pitch and Loudness mapped redundantly) and the muscle exertion level
estimation task (Pitch, Loudness, and Attack mapped redundantly). Further, for the time estimation task,
the use of the Attack mapping appeared to reliably inhibit performance. These findings strongly suggest
that sonification designs for sEMG need to be designed differently based on the task the user is performing.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction sEMG data are typically presented to a user visually on a
Surface electromyography (sEMG) is a technique for measuring
muscle activation onset, muscle activation duration, and muscle
exertion level. Physical therapists [1], ergonomists [2], and scien-
tists [3] use sEMG as an index of muscle fatigue [3] and as a
biofeedback tool [4]. sEMG biofeedback has been shown to be an
effective tool for increasing muscle strength [5] as well as for var-
ious motor learning and rehabilitation therapies [6] and many of
these applications require the monitoring of sEMG data in real time
or ‘‘live”.
computer monitor. While this can be effective, problems with this
method have arisen from both a data monitoring standpoint as
well as a motor learning standpoint. When recording and
monitoring sEMG data, often times data from multiple muscles
are being recorded and displayed simultaneously. Monitoring data
from multiple muscle groups on a screen creates a high visual load
for the therapist or researcher collecting the data. This can be over-
whelming and can also prevent the data collector from focusing on
the movements of the subject. For motor learning in sports appli-
cations, most movements are mastered in response to real-time
visual feedback of the sEMG data, and thus providing visual
biofeedback to an athlete can overload the capacities of the ath-
lete’s visual perception system [7]. To make use of biofeedback
while also avoiding visual overload, researchers have looked for
non-visual ways to present sEMG data and doing so acoustically
by means of sonification has shown potential for improving
athletic and exercise performance [7,8] and identifying
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musculoskeletal problems [9]. Additionally, sonification of stroke
patients’ movements in a 3-D space has resulted in improved
motor function as compared to patients whose movements were
not sonified [10].

Sonification put simply is ‘‘the use of non-speech audio to con-
vey information” [11]. However, as distinct techniques for sonifica-
tion have been developed, further classification of sonification
techniques has become necessary. According to Hermann [12],
the type of sonification used in a particular application should be
defined as either audification, parameter-mapping sonification
(PMSon), or model-based sonification. Audification is a technique
by which data samples are isomorphically mapped to the
amplitude of consecutive audio samples, creating a direct form of
sonification [13]. In parameter-mapping sonification, data values
are mapped to acoustic attributes or parameters of sound [12],
and in model-based sonification, the user must interact with a
model of a data set (in which sonic structures are pre-defined)
before any sound is heard [14].

The study presented in this paper used PMSon to present sEMG
data to a listener. PMSon is a common form of sonification [15–17],
and many parameters of sound have been explored for use in
PMSon, including pitch, loudness, harmonics, speed, tremolo,
attack time, and spatial location [18–20]. However, there has been
little objective evaluation of these sonification parameters for
sEMG data [20].

There have been evaluations done to evaluate the effects on
performance for these sonification parameters with other auditory
display types. For instance, researchers found that mapping more
than one sound parameter redundantly (such as pitch and loud-
ness) resulted in better performance than mapping just one
parameter at a time for auditory box plots [21]. However, this ben-
efit in performance was only found when certain dimensions of
sound were used, specifically pitch and loudness. When scatter-
plots of temperature data were sonified and spatialization
(panning) was used to redundantly represent time (x-axis),
performance improved compared to a temporal mapping only
[22]. Octave ranges were also varied for the same scatterplots
and it was found that participants performed better with wider
octave ranges than they did with just a one-octave range [22].

These findings suggest that the design of a sonification
influences the listener’s ability to derive the intended meaning
from the sonification. This has implications for sonification design-
ers who are creating sonifications for data display (as opposed to
artistic sonifications) and who are concerned with sonification aes-
thetics. Sonification designs to date have often not been systemat-
ically evaluated [7], and few quantitative approaches to objective
comparison of sonification paradigms have been used [23]. This
may lead to arbitrary sonification designs that, when applied to
the domain of sEMG sonification, could actually constrain motor
learning by being distracting, demotivating, or uninterpretable [7].

For the study presented in this paper, we hypothesized that
optimizing listeners’ accuracy in identifying different features of
sEMG data (e.g., muscle activation order, muscle exertion level)
using sonifications of sEMG data will require different sonification
designs depending on the specific feature being identified. In other
words, the best sonification design (i.e., resulting in the highest
level of performance) will be dependent on the user’s task.

Six different sonifications were created for this study in order to
present sEMG data to a listener. The sonifications were created
using three redundant combinations of pitch, loudness, and attack
time. Spatial location was used to place data from two different
muscles into different regions within the stereo field. Study partic-
ipants listened to a series of sEMG sonifications, and after listening
to each were given two tasks: (1) identify muscle activation order
and (2) identify relative muscle exertion level. The purpose of this
study was to perform a quantitative evaluation of various sonifica-
tion designs in order to investigate the effects of sonification
design on listener performance for these two tasks.
2. Methods

Given that the focus of this study is on the design of the
sonifications for real-time sEMG sonification use, for expediency
and experimental control, the experimental protocol used recorded
sEMG readings from a previous study that used sEMG data to iden-
tify potential musculoskeletal issues with touch screens [24].

2.1. Participants

Participants for this study were recruited from Texas A&M
University, all self-reported no hearing impairment, and completed
the informed consent process before participating in the study.
There were 36 participants total (14 male, 22 female), ranging in
age from 18 to 31 years old.

2.2. Sonification designs

Mapping pitch and loudness redundantly has been shown to
improve user performance [21]. However, it may be the case that
only certain redundant mappings result in such redundancy gains
[21]. With this in mind, the four parameters of sound mentioned
above were combined in the following ways to create six unique
sonification mapping schemes:

1. Loudness, Attack, Non-Spatialized.
2. Loudness, Attack, Spatialized.
3. Pitch, Loudness, Attack, Non-Spatialized.
4. Pitch, Loudness, Attack, Spatialized.
5. Pitch, Loudness, Non-Spatialized.
6. Pitch, Loudness, Spatialized.

2.3. Audio synthesis

The sEMG data used for this studywere sampled at 1000 Hz, and
then rectified and bandpass filtered (from 20 Hz to 450 Hz) using
MATLAB. SuperCollider (a free, open source software for real-time
audio synthesis and algorithmic composition) was used as the syn-
thesis engine to create the sonifications for this study. The filtered,
rectified sEMG data were imported into SuperCollider, and
SuperCollider then calculated the average value of each block of
one hundred data points. These averaged values were outputted
to a new array, and this new array was scaled individually for each
parameter (pitch, loudness, and attack time) using separate map-
ping equations for each parameter. This created three new scaled
arrays (one for each parameter) and these new scaled arrays were
sonified using SuperCollider’s Pbind function along with a triangle
waveform oscillator. The Pbind function sequentially steps through
each value of an array at a user defined rate, and plays a tone for each
value. The parameters of each tone (pitch, loudness, etc.) are con-
trolled by the values in the arrays. Each tone (henceforth referred
to as an ‘‘Event” to use SuperCollider’s terminology) of the Pbind
function was assigned a duration of 0.1 s with no space between
each Event. This resulted in a sonification that played 10 Events
per second (in order to preserve the time scale of the original sEMG
signal – i.e. a 10 s segment of sEMG data resulted in a 10 s sonifica-
tion). To ensure that the Events did not ‘‘bleed” together sonically
and that each Event could be heard individually, the decay time
for each event was set very low (<0.1 s). The pitch, loudness, and
attack time of each Event were then controlled by the sEMG data.

The sEMG data used in this study, once rectified and filtered,
contained values between 0 and 0.4 V. Pitch was mapped from this
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voltage range to a frequency range of 200–768 Hz (roughly G3 to
G5), such that an increase in sEMG data amplitude resulted in an
increase in pitch, and vice versa. Loudness was mapped to a range
of 50–68 dB(Z) as measured by the SoundMeter iOS app from Faber
Acoustical. Loudness was mapped such that an increase in sEMG
data amplitude resulted in an increase in loudness, and vice versa.
Attack time was mapped to a range of 0–39 ms, but was mapped
with an inverse polarity as compared to pitch and loudness. Specif-
ically, at the lowest sEMG data amplitudes (near 0 V), the attack
time for each Event was near its maximum of 39 ms. As the sEMG
data amplitude increased to its maximum of 0.4 V, the attack time
for each Event decreased down to its minimum of 0 ms. The map-
pings including attack time thus sounded smoother and more con-
nected when a muscle was relaxed, and sharper and more
percussive when a muscle was contracted.

For each trial, participants were presented two sonified chan-
nels of sEMG data simultaneously, and the first and second chan-
nels were referred to as Muscle A and Muscle B, respectively. To
spatialize the channels, data from Muscle A were panned hard left
(i.e., played only in the left audio channel) and data from Muscle B
were panned hard right. When the channels were non-spatialized,
the data from both Muscle A and Muscle B played directly in the
center of the stereo field (i.e., both muscles were heard equally
in the left and right audio channels).

Each sonification created for this study was 10 s long and con-
sisted of both Muscle A and Muscle B starting at rest, contracting
at close to the same time, and then returning to rest. Ten sets of
sonifications were made for each of the six designs being evaluated
in this study, resulting in a total of 60 sets of sonifications.

2.4. Setup & procedure

This study was conducted in the RIHM (Research on the Inter-
face between Humans and Machines) laboratory at Texas A&M
University. Volunteers who participated in this study used a pair
of Sennheiser HD 280 headphones powered by a Focusrite Scarlett
2i2 audio interface to listen to the sonifications. The study was run
locally through a browser using the XAMPP environment to run a
MySQL database for recording participants’ responses.

The first section of each experimental session consisted of an
introduction to sonification. In it, participants were given a brief
introduction to what sonifications are, what an auditory parameter
is, how an auditory parameter can be mapped to trends in a data
set, what sEMG is, and provided some examples of what a sEMG
sonification might sound like. Once this section was complete, par-
ticipants began the experimental trials. Participants listened to 6
different blocks with 10 trials in each block. Each block contained
one sonification design and the presentation order of the blocks
was counterbalanced. After listening to each sonification, the par-
ticipants were asked to identify the following:

(1) Which muscle (A or B) activated (contracted) first (Task 1).
(2) Which muscle (A or B) exhibited a higher exertion (Task 2).

The participants were given two tasks to perform (as opposed to
one) so that the sonification designs that resulted in the best lis-
tener performance for each task could be identified. This allowed
us to determine if the design that yielded the best performance
for Task 1 was the same design that yielded the best performance
for Task 2 or if the designs which yielded the best performance for
Tasks 1 and 2 were different.

These two tasks were chosen specifically because they are both
relevant to sEMG sonification. Task 1 (determining which muscle
contracted first) is relevant for those interested in using sEMG soni-
fication for biofeedback. Auditory information is superior to visual
information when portraying time-sequenced data such as muscle
activation times [25], and determining muscle recruitment order
with EMG is useful for athletic training because it promotes
correct muscle recruitment, which reduces an athlete’s risk of
injury [26].

Task 2 (identifying muscle exertion level) is relevant for those
interested in using sEMG to assess office ergonomics, a domain
in which repetitive strain injuries can result from prolonged mus-
cle exertion at low levels [27].

When participants were asked to identify which muscle
activated first and which muscle had a higher exertion level, they
chose one of the four options below and answers were saved into
the MySQL database for evaluation.

� Muscle A
� Muscle B
� Both muscles had the same activation time (or exertion level)
� Unsure

2.5. Study design

The study was a fully within factorial design with 2 indepen-
dent variables regarding auditory dimension: sonification design
(3: Loudness/Attack, Pitch/Loudness/Attack, and Pitch/Loudness),
and spatial location (2: Spatialized and Non-Spatialized). There
are two dependent variables that were used to assess performance:
judgment of muscle activation time (TIME) and judgment of mus-
cle exertion level (LEVEL).
2.6. Measures

To measure participants’ ability to identify muscle activation
time (TIME), the proportion of correct responses given for each
sonification design was calculated. For instance, if a participant
correctly identified which muscle activated first in 4 out of
10 Pitch/Loudness, Non-Spatialized conditions, that participant’s
score for that condition would be 4/10 or 0.4. An identical process
was done to measure the participants’ ability to identify which
muscle had the higher exertion level (LEVEL).
2.7. Statistical analysis

To explore the effects of spatialization and sonification design
on the participants’ ability to identify muscle activation time and
exertion level, two separate fully within 2 (Spatialization: yes or
no) � 3 (Auditory Design: Pitch/Loudness, Pitch/Loudness/Attack,
and Loudness/Attack) Factorial Repeated Measure ANOVAs
(RMANOVA) were conducted—one RMANOVA for each task
measure, TIME and LEVEL. Post hoc analysis was conducted for
significant effects using Bonferroni comparisons and One-Way
ANOVAs were used to explore the effects of any interactions. Alpha
was set at the standard level of 0.05. Further, given the design of
the study, it was possible to calculate what performance would
be if the participants were simply guessing each time (i.e., chance).
Given that participants had 4 options (i.e., Muscle A, Muscle B, Both
muscles had the same activation time (or exertion level), and
Unsure) a chance performance would be 1 out of 4, or 0.25.
Conditions that had very low performance scores were compared
to chance to identify if this low performance reflected participants
simply guessing.
3. Results

To describe the findings of this study, descriptive statistics as
well as inferential statistics are provided below.



Table 1
Descriptive statistics for both performance measures (TIME and LEVEL) for all six of the sonification conditions (N = 36).

Mean SEM Median Min Max

Activation time (TIME)
Loudness/Attack, Non-Spatialized 0.12 0.02 0.1 0.0 0.5
Loudness/Attack, Spatialized 0.42 0.03 0.4 0.1 0.8
Pitch/Loudness/Attack, Non-Spatialized 0.18 0.02 0.2 0.0 0.6
Pitch/Loudness/Attack, Spatialized 0.43 0.04 0.4 0.1 0.9
Pitch/Loudness, Non-Spatialized 0.26 0.03 0.3 0.0 0.7
Pitch/Loudness, Spatialized 0.54 0.03 0.6 0.2 0.9

Exertion level (LEVEL)
Loudness/Attack, Non-Spatialized 0.25 0.03 0.3 0.0 0.5
Loudness/Attack, Spatialized 0.64 0.03 0.7 0.3 0.9
Pitch/Loudness/Attack, Non-Spatialized 0.23 0.02 0.2 0.0 0.5
Pitch/Loudness/Attack, Spatialized 0.75 0.02 0.8 0.4 1.0
Pitch/Loudness, Non-Spatialized 0.29 0.03 0.3 0.0 0.7
Pitch/Loudness, Spatialized 0.64 0.02 0.7 0.3 0.9

Fig. 1. Mean proportion correct for Activation TIME task by sEMG Sonification Design and Spatialization. There is a main effect of Spatialization (F (1, 35) = 159.78, p < 0.001)
and Design (F (2, 70) = 16.23, p < 0.001) and no interaction (p = 0.72). Error bars represent the 95% confidence intervals.
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3.1. Descriptives

Table 1 provides the descriptive statistics for both measures
(TIME and LEVEL) for the six sonification conditions.
3.2. Activation Time

As seen in Fig. 1, participants were better able to identify which
muscle activated first with the Spatialized conditions versus the
Non-Spatialized conditions and this main effect was significant,
F (1, 35) = 159.78, p < 0.001, g2

p = 0.82. Further, another main effect

of Design, F (2, 70) = 16.23, p < 0.001,g2
p = 0.32, is seen in the figure

with performance being better for the Pitch/Loudness conditions
than either the Loudness/Attack (Bonferroni comparison:
p < 0.001) or Pitch/Loudness/Attack conditions (Bonferroni
comparison: p = 0.001). However, there is no interaction between
Spatialization and Design for TIME (p = 0.72).

For the Non-Spatialized conditions, the performance was
extremely low—near or below chance performance (chance
performance = 0.25). To test for this, single sample t-tests were
done for each of the three Non-Spatialized conditions and the
Loudness/Attack and Pitch/Loudness/Attack conditions were both
reliably below chance (t (35) = �6.10, p < 0.001 and t (35) =
�3.10, p = 0.004 respectively). However, the Pitch/Loudness
condition was not significantly different than chance (p = 0.75).
3.3. Exertion level

Fig. 2 shows the proportion correct for the exertion level task by
Design and Spatialization and again there is clearly a main effect of
Spatialization, F (1, 35) = 220.79, p < 0.001, g2

p = 0.86, with
performance for the Spatialized tasks being higher. There is also
an interaction between Spatialization and Design F (2, 70) = 7.64,
p = 0.001, g2

p = 0.18. To investigate this interaction, one-way
ANOVAs were conducted for the simple effects of Design for
Spatialized and Non-Spatialized conditions separately. There was
a simple effect of Design for the Spatialized conditions,
F (2, 70) = 8.02, p = 0.001, g2

p = 0.19, and pairwise comparisons
adjusted using Bonferroni found that the Pitch/Loudness/Attack
condition was significantly better than the Loudness/Attack
condition (p = 0.04) and the Pitch/Loudness condition (p = 0.02).
However, for the Non-Spatialized conditions, there was no effect
of Design (p = 0.23). Further there was no main effect of Design
(p = 0.18).
4. Discussion

These results clearly indicate that designs of sEMG sonifica-
tions can impact performance and that effective designs will
need to differ based on the task being performed with those
sEMG sonifications. Specifically, the condition that resulted in



Fig. 2. Mean proportion correct for Exertion LEVEL task by sEMG Sonification Design and Spatialization. There is a main effect of Spatialization (F (1, 35) = 220.79, p < 0.001)
and interaction between Spatialization and Design (F (2, 70) = 7.64, p = 0.001) and no main effect of Design (p = 0.18). Error bars represent the 95% confidence intervals.

S.C. Peres et al. / Displays 47 (2017) 25–31 29
the best performance for the TIME task (Spatialized Pitch/Loud-
ness) was not the same as that for the LEVEL task (Spatialized
Pitch/Loudness/Attack). Both tasks did show better performance
with the Spatialization dimension, but interestingly, for the
LEVEL estimation task, there seemed to be a floor effect on per-
formance for the Non-Spatialized conditions (with performance
at about chance) but not for the TIME estimation task. For the
TIME task in the Non-Spatialized conditions, the Pitch/Loudness
condition was better than the other two sound design condi-
tions, further underscoring the potential effects of sonification
design on performance. Given that all of the significant findings
had effect sizes (g2

p) that were medium (0.06–0.13) or high
(greater than or equal to 0.14), these effects have practical sig-
nificances as well [28]. Indeed the effect size for Spatialization
indicates that this variable explains 74.9% of the variance for
Time and 85.6% of the variance for Activation level. Although
the effect sizes of Auditory Design are lower, explaining 15.6%
and 10.3% of the variability in Time and Activation level
respectively, these effects can still be considered impactful on
performance.

The specific implications regarding the dimensions and combi-
nations of dimensions used in this study are noteworthy as well.
At a very basic level, if it were merely adding more dimensions of
sound to a sonification that improved the listener’s performance,
the Spatialized Pitch/Loudness/Attack conditions would have
resulted in the best performance for both tasks. However, this
design was the best for identifying exertion LEVEL but not activa-
tion TIME. Given that the best performance for TIME was in the
conditions without attack, it could be that instead of having this
dimension, which is presenting an attribute of time, facilitate the
interpretation of time, it somehow seemed to interfere with it.
This may be because attack time was mapped inversely to
sEMG—specifically an increase in sEMG amplitude resulted in a
decrease in attack time. This result may also have to do with
the perceptual properties of these dimensions. Previous research
found that when integral dimensions of sound were used redun-
dantly for auditory graphs, performance was better than when
separable dimensions of sound were used but there was no
redundancy loss with separable dimensions [21]. These results
essentially mean that if a sonification designer uses redundant
dimensions there may be a benefit, but there should not be a loss
if separable dimensions are used. The dimension of attack time is
not clearly integral or separable from Pitch and/or Loudness as it
is typically considered a component of timbre [29]. However,
given Peres and Lane’s results of no redundancy loss with separa-
ble dimensions [21], the lower performance in the conditions
with attack time for TIME estimation are surprising and warrant
further study. Peres and Lane’s study also only examined one task
that involved participants evaluating the statistical components
of the auditory graphs which is a task that is cognitively more
similar to the task of estimating exertion LEVEL. This may be
the reason that the effects of Design for the LEVEL task more clo-
sely follow the results of the Peres and Lane [21] study than the
effects of Design on the TIME task.

The benefit of Spatialization is very clear and indeed not
surprising given the nature of the tasks and display. Specifically,
the tasks required the user to compare activation times and
exertion levels of the two muscles, which requires selective
attention to the display for each muscle. In the Non-Spatialized
design, it is likely remarkably difficult for the listener to selectively
attend to the information for each muscle as they are both
presented equally in each ear, requiring the listener to sonically
distinguish one muscle from another. This difficulty is clear in
the LEVEL task where participants performed at essentially chance
(i.e., chance performance being a mean proportion correct of 0.25)
for all three Non-Spatialized design conditions. However,
Spatialization made attending to the muscles individually easier
since each muscle was presented specifically in one ear or the
other and thus may have made the comparison of the muscles’
properties easier.

These findings in combination strongly support the notion
that not only do sonifications of the same type of data need
to be designed differently based on the task that the user is try-
ing to accomplish, but also that the design of the sonification
for that task needs to be created in a manner that measurably
supports performance. However, for those who are designing
sonifications for sEMG, it would be very difficult if not impossi-
ble to empirically test every possible combination of auditory
dimensions for every type of task and environment. Therefore,
it is necessary to develop a systematic approach for developing
and testing sEMG sonification designs to ensure that they meet
the needs of the users.
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5. Future work

Exploring the space of task-specific sonification design will not
be easy. There are still hurdles within the field of sonification that
have yet to be overcome. The most prominent hurdle is referred to
as ‘‘The Mapping Problem (TMP)” [30]. TMP is generally specific to
PMSon and results from the phenomenon of auditory parameter
perceptual entanglement (e.g. an increase in loudness will be per-
ceived by the listener as an increase in pitch unless frequency is
controlled for). This can result in unpredictable artifacts within
the sonification that can impair the listener’s performance.
Researchers have begun to explore the realm of sonification aes-
thetics in order to address this problem [31]. Sonification aesthet-
ics is primarily concerned with meaning-making, that is, the ability
of the listener to derive meaning from the sonification [31].
Embodied sonification designs have been explored as a promising
way of improving sonification aesthetics and getting away from
PMSon in order to address the mapping problem [31].

We are also interested in exploring the realm of sonification
aesthetics and investigating how aesthetics could be leveraged to
create meaningful real-time sEMG sonifications for motor learning
and data monitoring applications. We believe that sonification
designs (not necessarily PMSon) that are tailored to the task at
hand are crucial to improving sonification aesthetics and
meaning-making. But the question remains: how does one go
about designing a sonification specifically for the task at hand?
This will certainly not be easy, however, there are tools available
that could aid in the process of refining sonification design that
we intend to explore in future work. One such tool is the task anal-
ysis, a rigorous exercise that comes from the domain of Human
Factors. Human Factors is a field that seeks to integrate a user with
their task and environment in order to optimize safety, efficiency,
and performance. A task analysis asks, and attempts to exhaus-
tively answer, three questions:

(1) Who is the user?
(2) What is the user’s environment?
(3) What is the task to be performed?

It is our opinion that the answers to these questions could be
used to inform sonification design for a given task and that doing
so would improve the quality of the sonification design which
could enhance a listener’s ability to derive meaning from the
sonification.
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