Displays 47 (2017) 12-24

Contents lists available at ScienceDirect

Displays

Displays i

@ CrossMark

journal homepage: www.elsevier.com/locate/displa

Sonification of a network’s self-organized criticality for real-time
situational awareness ™

Paul Vickers **, Chris Laing”', Tom Fairfax ¢

2 Northumbria University, Newcastle upon Tyne NE1 8ST, UK
b Sciendum Ltd, 20-22 Wenlock Road, London N1 7GU, UK
€SRM Solutions, The Grainger Suite, Dobson House, Regent Centre, Gosforth, Newcastle upon Tyne NE3 3PF, UK

ARTICLE INFO ABSTRACT

Article history:

Received 28 October 2015

Received in revised form 21 April 2016
Accepted 6 May 2016

Available online 11 May 2016

Communication networks involve the transmission and reception of large volumes of data. Research indi-
cates that network traffic volumes will continue to increase. These traffic volumes will be unprecedented
and the behaviour of global information infrastructures when dealing with these data volumes is
unknown. It has been shown that complex systems (including computer networks) exhibit self-
organized criticality under certain conditions. Given the possibility in such systems of a sudden and spon-
taneous system reset the development of techniques to inform system administrators of this behaviour

ii{jvivt(z)rdsijis a could be beneficial. This article focuses on the combination of two dissimilar research concepts, namely
Soniﬁc?t,ion play sonification (a form of auditory display) and self-organized criticality (SOC). A system is described that

sonifies in real time an information infrastructure’s self-organized criticality to alert the network admin-
istrators of both normal and abnormal network traffic and operation. It is shown how the system makes
changes in a system’s SOC readily perceptible. Implications for how such a system may support real-time

Information visualization
Self-organized criticality

Network monitoring

situational awareness and post hoc incident analysis are discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the large volumes of traffic passing across networks it is
important to know about the state of the various components
involved (servers, routers, switches, firewalls, computers,
network-attached storage devices, etc.) and the types and volume
of the data traffic passing through the network. In the case of the
hardware, network administrators need to know if a component
has failed or is approaching some capacity threshold (e.g., a server
has crashed, a hard drive has become full, etc.) so that appropriate
action can be taken. Likewise, the administrators need to be aware
of traffic type and flow. For example, a large increase in traffic vol-
ume (perhaps as would occur if the network were to broadcast a
live stream of a major sporting event) might require extra servers
to be brought online to handle and balance the load. A sudden
increase in certain types of traffic (such as small UDP packets)
might indicate that a distributed denial-of-service attack is in

* This paper was recommended for publication by Richard H.Y. So.
* Corresponding author.
E-mail addresses: paul.vickers@northumbria.ac.uk (P. Vickers), christopher.
laing@sciendum.org.uk (C. Laing), tom.fairfax@srm-solutions.com (T. Fairfax).
1 This work was done while Chris Laing was at Northumbria but he is now at
sciendum.org.uk.

http://dx.doi.org/10.1016/j.displa.2016.05.002
0141-9382/© 2016 Elsevier B.V. All rights reserved.

progress, for example, and corrective action would need to be
taken to protect the network.”

Given the large volume of traffic passing through a network
every second in the form of data packets and the fact that each
packet will be associated with particular sender and receiver IP
addresses and port numbers, understanding what is happening to
a network requires information about the traffic data to be aggre-
gated and presented to the network administrator in an easy-to-
understand way. This problem of information presentation and
interpretation, or ‘situational awareness’, was addressed by the
military leading to Boyd’s OODA (observe, orient, decide, act)
model (see [1]), and others have followed (notably Endsley’s
three-level model [2]). Situational awareness, as Cook put it,
“requires that various pieces of information be connected in space
and time” (Nancy Cooke in McNeese [3]).

Computer networks possess high tempo and granularity but
with low visibility and tangibility. Administrators rely on complex
data feeds which typically need translation into language that can
be understood by decision makers. Each layer of analytical tools
that is added can increase the margin for error as well as adding

2 UDP, or user datagram protocol, is a way of sending internet packets without
handshaking. It means that packets can be lost, but in some real-time systems (e.g.,
online gaming) it is preferable to lose a packet than to wait for a delayed one.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.displa.2016.05.002&domain=pdf
http://dx.doi.org/10.1016/j.displa.2016.05.002
mailto:paul.vickers@northumbria.ac.uk
mailto:christopher.laing@sciendum.org.uk
mailto:christopher.laing@sciendum.org.uk
mailto:tom.fairfax@srm-solutions.com
http://dx.doi.org/10.1016/j.displa.2016.05.002
http://www.sciencedirect.com/science/journal/01419382
http://www.elsevier.com/locate/displa

P. Vickers et al./Displays 47 (2017) 12-24 13

Clausewitzian friction (see von Clausewitz’s ‘On War’, 1873). Fur-
thermore, it is practically impossible for most administrators to
watch complex visual data feeds concurrently with other activity
without quickly losing effectiveness [4].

In military circles there is debate about whether cyberspace has
become the fifth warfighting domain (the others being sea, land,
air, and space) [4]. Computer networks are increasingly coming
under strain both from adversarial attacks (warfighting in military
parlance) and from load and traffic pressures (e.g., increased
demand on web services).

Another term that has made its way from the military lexicon
into the wider world of network administration is situational
awareness. Endsley [2, p. 36] defined situational awareness (SA)
as the “perception of elements in the environment within a volume
of time and space, the comprehension of their meaning, and the
projection of their status in the near future”. So, SA facilitates an
administrator in becoming aware of a network’s current state.
The perception phase of SA comprises the recognition of situational
events and their subsequent identification. Sonification is a process
of computational perceptualisation which Vickers [5] suggested is
well suited to the monitoring of time-dependent processes and
phenomena such as computer networks.

Fairfax et al. [4] noted that the cyber environment is increas-
ingly being viewed as the fifth warfighting domain (alongside land,
sea, air, and space). They stated the challenge for maintaining sit-
uational awareness in the cyber environment as:

...whilst land, sea, air and space are physically distinct and are
defined by similar criteria, cyberspace is defined in a different
way, existing on an electronic plane rather than a physical
and chemical one. Some would argue that cyber space is a vein
which runs through the other four warfighting domains and
exists as a common component rather than as a discrete
domain. One can easily see how cyber operations can easily play
a significant role in land, sea, air or space warfare, due to the
technology employed in each of these domains [4, p. 335].

Thus, in this environment where human perception is con-
strained, adversaries and protagonists alike are dependent on tools
for their perception and understanding of what is going on. Many
tools on which we rely for situational awareness are focused on
specific detail. The peripheral vision (based on a range of senses)
on which our instinctive threat models are based is very narrow
when canalised by the tools we use to monitor the network envi-
ronment. The majority of these tools use primarily visual cues
(with the exception of alarms) to communicate situational aware-
ness to operators. Put simply, situational awareness is the means
by which protagonists in a particular environment perceive what
is going on around them (including hostile, friendly, and environ-
mental events), and understand the implications of these events
in sufficient time to take appropriate action.

When network incidents occur experience shows that the speed
and accuracy of the initial response are critical to a successful res-
olution of the situation. Operators observe the indicators, orient
themselves and their sensors to understand the problem, decide
on the action to be taken, and act in a timely and decisive way. Tra-
ditional approaches to monitoring can hinder this by not making
the initial indication and its context clear thus requiring an exten-
sive orientation stage. An ineffective initial response is consistently
seen to be one of the hardest things for people to get right in prac-
tice [4]. D’Amico (see McNeese [3]) put the challenge of designing
visualizations for situational awareness this way:

...visualization designers must focus on the specific role of the
target user, and the stage of situational awareness the visualiza-
tions are intended to support: perception, comprehension, or
projection.

While work has been carried out to use information visualiza-
tion techniques on network data we note that the perceive and
comprehend stages in Endsley’s three-level situational awareness
model (the third being project) [2] align themselves with Pierre
Schaeffer’'s two fundamental modes of musical listening, écouter
(hearing, the auditory equivalent of perception) and entendre (liter-
ally ‘understanding’, the equivalent of comprehension). Vickers [6]
demonstrated how Schaeffer’s musical context can be applied soni-
fication. This paper proposes a sonification tool as one of the means
by which real-time situational awareness in network environ-
ments may be facilitated. A more detailed discussion of situational
awareness and its relationship to network monitoring (specifically
within a cybersecurity and warfighting context) can be found in
Fairfax et al. [4].

1.1. Sonification for network monitoring

Sonification has been applied to many different types of data
analysis (for a recent and broad coverage see The Sonification Hand-
book [7]). One task for which it seems particularly well suited is
live monitoring, as would be required in situational awareness
applications [5]. The approach described in this article provides
one way of addressing the challenges outlined above by enabling
operators to monitor networks concurrently with other tasks using
additional senses. This has the potential to increase operators’
available bandwidth without overloading individual cognitive
functions, and could provide an immediate and elegant route to
practical situational awareness.

It has been suggested that understanding the patterns of net-
work traffic is essential to the analysis of a network’s survivability
[8]. Typically, analysis takes place post hoc through an inspection
of log files to determine what caused a crash or other network
event. Lessons would be learned and counter measures put in place
to prevent a re-occurrence.

For the purpose of keeping a network running smoothly load
balancing can sometimes be achieved automatically by the net-
work itself, or alerts can be posted to trigger a manual response
by the network administrators. Guo et al. [8] observed that “from
the perspective of traffic engineering, understanding the network
traffic pattern is essential” for the analysis of network survivability.

Often, the first the administrators know about a problem on a
network is after an attack, or other destabilizing event, has taken
place or the network has crashed. Here, the traffic logs would be
examined to identify the causes and steps would be taken to try
to protect against the same events in future. Live monitoring of
network traffic assists with situational awareness and could pro-
vide administrators either with advanced warning of an impending
threat or with real-time intelligence on network threatening
events in action.’

Real-time network monitoring offers a challenge in that, except
for alarms for discrete events, the administrator must be looking at
a console screen to observe what is happening. To identify changes
in traffic flow would this require attention to be devoted to the
console [4]. Vickers [5, p. 455] categorised monitoring tasks as
direct, peripheral, or serendipitous-peripheral:

In a direct monitoring task we are directly engaged with the
system being monitored and our attention is focused on the sys-
tem as we take note of its state. In a peripheral monitoring task,
our primary focus is elsewhere, our attention being diverted to
the monitored system either on our own volition at intervals by
scanning the system ...or through being interrupted by an
exceptional event signalled by the system itself.

3 By threat, we do not only mean a hacking/DDo$ attack, but also include ‘natural’
disasters such as component failures, and legitimate traffic surges.

14 P. Vickers et al./Displays 47 (2017) 12-24

Serendipitous-peripheral is similar to peripheral monitoring
except that it uses what Mynatt et al. [9] term “serendipitous infor-
mation”, that is, the information gained “is useful and appreciated
but not strictly required or vital either to the task in hand or the
overall goal” [5, p. 456].

Thus, a system to sonify network traffic may allow us to moni-
tor the network in a peripheral mode, the monitoring becoming a
secondary task for the operator who can carry on with some other
primary activity. Network traffic is a prime candidate for sonifica-
tion as it comprises series of temporally-related data which may be
mapped naturally to sound, a temporal medium [5].

Gilfix and Crouch’s Peep system [10] is an early network sonifi-
cation example. They used natural sounds to represent network
states and events and hoped that repeated listening would enable
users to build up an understanding of what normal operation of
their network sounds like. The system was offered very much as
a proof-of-concept and no specific guidance was given on particu-
lar ways in which Peep could be used.

Kimoto and Ohno [11] developed a network sonification system
called StetHo which uses HTTP traffic data to generate MIDI events
which are in turn rendered into sound by MIDI-compatible sound
synthesis software.* An experiment showed that four participants
who used the system for five minutes to identify peaks in HTTP traf-
fic. Kimoto and Ohno concluded that the system was suitable to
grasp “traffic vaguely”, so like Peep there was a lack of a sense of real
use cases that StetHo might support.

Ballora et al. [12-14] built on these ideas to address the partic-
ular case of situational awareness. Rather than use environmental
sounds, Ballora et al. used synthesized musical instruments to rep-
resent network data as pitched tones. Using an auditory model of
the network packet space they produced a “nuanced soundscape
in which unexpected patterns can emerge for experienced listen-
ers”. Their approach used the five-level DL fusion model which
is concerned with integrating multiple data streams such that sit-
uational awareness is enhanced (see Blasch and Plano [15]). Rather
than focus on simple bytes and packets coming in and leaving the
network, their system allowed differentiation between the geo-
graphic origin of packets (via IP addresses), and the nature of the
traffic (via port numbers). However, Ballora et al. [12] noted that
the high data speeds and volumes associated with computer net-
works can lead to unmanageable cognitive loads. Endsley and Con-
nor (in McNeese [3]) came to the same conclusion, stating that the
“extreme volume of data and the speed at which that data flows
rapidly exceeds human cognitive limits and capabilities.” They
concluded:

The combination of the text-based format commonly used in
cyber security systems coupled with the high false alert rates
can lead to analysts being overwhelmed and unable to ferret
out real intrusions and attacks from the deluge of information.
The Level 5 fusion process indicates that the HCI interface
should provide access to and human control at each level of
the fusion process, but the question is how to do so without
overwhelming the analyst with the details.

Like StetHo, Giot and Courbe’s INTENTION (Interactive Network
Sonification) system mapped network activity to a musical aes-
thetic via MIDI [16]. Four sound channels were implemented.
The first three processed HTTP, FTP, and DNS traffic respectively,
while the fourth channel dealt with traffic from all other protocols
together. The system mapped several details of traffic properties to
the parameters of the output sounds. For instance, packet size con-
trolled the frequency of a tone while the TTL (time to live) of a

4 MIDI (musical instrument digital interface) is a set of software and hardware
protocols developed by leading synthesizer manufacturers in the 1980s to allow
interoperability between previously incompatible devices.

datagram controlled the duration of the tone. Geographic distance
(estimated from IP addresses) controlled the amount of reverbera-
tion applied to the tone. Unfortunately, no target use case was sta-
ted and no description or demonstration of the system was
provided. It remains to be determined how effective this deliberate
approach to consider musical aesthetics was.

Wolf and Fiebrink [17] designed the SonNET system to help users
(artists or people have an interest in network traffic information)
to easily access network traffic through a simple coding interface
without requiring knowledge of Internet protocols. The system
used three levels of abstraction dealing with raw packet data, tem-
poral aspects and directionality of traffic (via source and destina-
tion IP addresses, port numbers, and time since the last packet),
and aggregated information over multiple packets (via packet state
and flags) respectively.

The system’s default operation is to process TCP packets on port
80 (i.e., HTTP traffic), though users can select to monitor UDP traffic
and traffic on all network ports if they wish. The sonification itself
was left to the user to specify by writing a script to control a ChucK
module.”

The system was evaluated with four composers and students of
music composition. The objective was to discover whether SoNNEr
would support composers in creating a musical piece. Therefore,
the target use case is quite different from the systems mentioned
above which were more concerned with assisting with the moni-
toring of a network.

Worrall’s NetSon project [18] is a network sonification tool that
aims to “sonically reveal aspects of the temporal structure of com-
puter network data flows in a relatively large-scale organization”.
The system began as an exploratory tool for an art and technology
event and includes visualizations alongside the auditory output
and aims to assist people with the peripheral monitoring of a net-
work. The sonification design is not explained in detail, but it is
based on using the features of raw traffic data to control various
aspects of the output sound. The overall design is explained thus:
“in contradistinction to much parameter mapping sonification,
‘melodic’ pitch structures are used very sparingly in favour of a
diverse klangfarben (timbral) palette.”

One particular configuration of the system is described as
revealing “a combination of interesting features (such as printer
server activity) and load-balancing” Worrall [18]. However, in its
present version NerSon is presented as a sonification for public
spaces so further work is necessary to see how well it supports
specific network monitoring tasks and goals.

As seen in the work mentioned above, network sonification typ-
ically approaches the task by representing the raw traffic data
(packets) or aggregated information about those packets. To
address managing the complexity we propose that the study of
self-organized criticality has the potential to provide a way of
aggregating network behaviour and presenting the ‘health’ of the
network as a simple variable, or set of related variables.

2. Self organized criticality in network traffic

The 20th century witnessed a number of advances in our under-
standing of complexity in dynamical systems. In 1987 Bak et al.
[19] brought together the concept of emergent complexity in sim-
ple systems, the mathematics describing the complexity of fractals
in natural systems, and the scale-invariant power laws, fractal
geometries, and the pink (1/f) noise observed at the critical points
between phase transitions in physical systems in a single explana-
tory model they termed self-organized criticality, or SOC.

5 ChucK is a concurrent music programming language that can be used to generate
audio (see http://chuck.cs.princeton.edu).

http://chuck.cs.princeton.edu

P. Vickers et al./Displays 47 (2017) 12-24 15

They showed that these factors could be observed in a cellular
automaton and that they were linked to critical point phenomena.
While critical point phenomena are typically associated with the
phase transitions of thermodynamical systems (e.g., when a liquid
transitions to the vapour phase), SOC could be observed in a range
of natural systems. SOC accounts for the emergence of complexity
in a way that does not depend on the way a system is configured
internally. That is, parameters of a system could be manipulated
without affecting the emergence of SOC (the scale-invariant power
laws, fractal geometries, 1/f noise are all still observed), hence the
criticality was self-organized, not being dependent on external
influences.

The classic example Bak, Tang, and Wiesenfeld offered was the
sandpile model. Avalanches in the sandpile (critical points) happen
as a result of grains of sand being sprinkled onto the pile. It is the
sandpile organizing itself that leads to an avalanche (a system
reset). SOC is a function of an external driving force and internal
relaxation process with a separation of timescales between them
[4]. In the case of the sandpile the external driving force is the
addition of sand grains and the internal relaxation process is the
avalanche. The avalanche can take seconds to happen yet the
external driving force can operate over a longer timescale (minutes
or hours). Since then, SOC has been demonstrated in other natural
systems such as earthquakes (in which the relaxation process can
take seconds compared to the years or decades involved in the
external driving force) and forest fires and has subsequently been
observed in artificial systems such as stock markets and, latterly,
computer networks.

The separation of timescales also comprises two other essential
elements: thresholds and metastability [20]. Since the time taken
before an internal relaxation process occurs is non-deterministic,
so is the threshold at which the internal relaxation process occurs.
Thus, a system can exhibit many many differing states, each of
which is ‘barely stable’, a condition called metastability [19].

Modern computer networks demonstrate periods of very high
activity alternating with periods of relative calm, a characteristic
known as ‘burstiness’ [21]. It was commonly thought that ethernet
traffic conformed to Poisson or Markovian distributions. Traffic
would thus possess a characteristic burst length which would be
smooth when averaged over a timescale [22]. However, network
traffic has been shown to have significant variance or burstiness
over a range of timescales. Such traffic can be described using
the statistical concept of self-similarity and it has been established
that ethernet traffic exhibits this property [23].

In a wavelet analysis of the burstiness of self-similar computer
network traffic Yang et al. [24] demonstrated that the avalanche
volume, duration time, and the inter-event time of traffic flow fluc-
tuations obey power law distributions. According to Bak et al. [19]
such power law distributions in complex systems are evidence of
SOC. Fukuda et al. [25] demonstrated the existence of phase tran-
sition phenomena in network traffic and Valverde and Solé [23]
showed how network traffic exhibits the critical states associated
with SOC.

Yang et al. [24] suggested that SOC might be a better explana-
tion of network traffic than traditional Poisson models. They argue
that the power laws evident in inter-event timings indicates that
network traffic “exhibits long-term memory (its behaviour across
widely separated times is correlated)” offering new ways to model
and understand network traffic and behaviour. This supports
Fukuda et al. [25]'s suggestion that self-organized criticality could
be the origin of the fluctuation of burstiness in network traffic. In
experiments with an ethernet traffic simulator to investigate com-
petition among nodes and the exponential back-off that occurs
when packets fail to be transmitted due to congestion, they discov-
ered that when traffic flow rate was low there were few collisions

and the traffic statistics were “dominated by the random input”
[25, p. 299]. However, when the input reached the critical rate
the number of collisions became significant and the output traffic
became “correlated in long time scales”. They observed that at this
critical point the traffic hovered or fluctuated randomly about the
two phases and that these fluctuations exhibited self-similarity.

2.1. Identifying and measuring the SOC

SOC is not a discrete variable that can be identified and moni-
tored directly. Instead, its presence is inferred through the analysis
of a system’s behaviour or properties, specifically by looking at
some time-dependent characteristics. For networks such analysis
would typically focus on the traffic, that is, the packets passing
through the system. We may observe the SOC by measuring these
time-dependent characteristics and comparing changes in succes-
sive samples. This is typically done by calculating a log return. The
log return, r, of two data values on a stream S at intervals t and t’ is
given by Eq. (1).

r = In[S(t)] - In[S(t)] (1)

That is, two successive data samples are converted to logarithms,
which are then subtracted to give the log return value. During nor-
mal behaviour the log return differences will be small. However, a
repeated series of large changes may well indicate a network insta-
bility, and the possibility of some form of network ‘reset’. Here, a
reset does not necessarily mean a catastrophic failure of the net-
work, but could rather mean the existence of a rapidly increasing
level of service traffic restrictions [4].

Some simple examples may illustrate what we mean by service
traffic restrictions. The log returns (r) of normal network traffic and
a network undergoing a distributed denial of service (DDoS) attack
were compared using a Daubechies wavelet (part of the wavelet
transformation package within Matlab). Since we are concerned
with the notion of self-similar properties, then it made sense to
use this particular approach [26].

As can be seen in Fig. 1(a), the residuals have the characteristic
burstiness of normal network traffic. This can be seen more clearly
in Fig. 1(b), were the residuals have been denoised. In addition, the
FFT spectrum for the normal traffic displays almost consistent
energy levels across the entire frequency range.

Fig. 2(a) shows DDoS attack traffic. Again the characteristic
burstiness can be seen in the residuals, this time slightly more
intense and regular. However, note the energy levels and distribu-
tion in the FFT spectrum. The energy levels have increased by a fac-
tor of 10, while the distribution is confined towards the upper end
of the frequency spectrum, and note the rising trend, possibly an
indication of increasing SOC activity, and an unstable situation.

In Fig. 2(b), the residuals of the beginning of a malicious net-
work attack have been denoised. On a cursory inspection it appears
to be very similar to Fig. 1(b). Both figures plot the same data sets,
but Fig. 2(b) is a representation of the denoised residuals of normal
traffic data that is also carrying malicious traffic data. Conse-
quently, one would expect to see some differences, and on a closer
inspection, the differences become clear. Firstly, at approximately
500 (x-axis) in Fig. 2(b), a small amount of SOC activity can be
observed (this is not present in Fig. 1(b)). Secondly, between
1000 and 1500 (x-axis) on both figures, it can be seen that the level
and intensity of SOC activity has increased in Fig. 2(b). Whereas
between 1500 and 2000 (x-axis), the SOC spike has moved, while
between 2000 and 2500 (x-axis), the SOC activity has intensified.
In the next section we describe a system for sonifying the SOC
characteristics of network traffic.

16

P. Vickers et al./Displays 47 (2017) 12-24

Residuals
£ T
Py -
2+ -3
0 j
21 -
< |- -
55 | | L | | |
500 1000 1500 2000 2500 3000
Histogram Cumulative histogram
0.25 T T T T | T T T T
02 B 08 H
015 — 06 H
01 - 04 H
0.05 — 021 H
0 0
-6 4 2 0 2 4 6 -6 4 2 0 7~ 4 6
4 Autocorrelations. o 10 FFT - Spectrum
T T T T T T T T T T T T T T
08 B St 4
06| i al |
=
04| i g’ at 1
02} B ar 1
op e
L L L i L L L 0 s L i .
-200 -150 -100 -50 0 50 100 150 200 0 0.05 0.1 0415 02 025 03 035 04 045 05
Frequency
Mean 00070 Maximum 0 = © Standard dev. ti2r LUnom |
Median 0.0107 "~ Minimum 5,037 Median abs. dev. 03028 L2nom 6422
Mode 0.00283 Range 11.82 Mean abs. dev. 0.6615 Max nom 5.037
(a)
Denoised Signal
6=
4
2
0 ' 4
2
el—
-
| | | | | |
500 1000 1500 2000 2500 3000

(b)

Fig. 1. (a) Shows a Daubechies wavelet analysis of normal traffic data while (b) shows the denoised traffic residuals.

P. Vickers et al./Displays 47 (2017) 12-24

| | |
500 1000 1500 2000 2500 3000

Cumulative histogram

x10% FFT - Spectrum
10 T T T T T T

sl
2l
& 4l
2l

L 1 L 1 L 1 L 0 L 2 Locupsdon dun ospdlit L

-150 -100 -50 o 50 100 150 200 o 005 01 015 02 0.25 03 0.35 04 045 05

Denoised Signel

500 1000 1500 2000 2500 3000

(b)

Fig. 2. (a) Shows a Daubechies wavelet analysis of DDoS traffic data while (b) presents the denoised traffic residuals.

17

18 P. Vickers et al./Displays 47 (2017) 12-24

3. The SOC sonification system

A prototype SOC sonification system, socs, was designed and
constructed to facilitate the real-time auditory perception of the
SOC properties of network traffic. The tool was implemented using
the Pure Data audio programming environment (freely available
from http://puredata.info) and a custom Python script that used
the Python socket library for dealing with the capture of network
packets and the transmission to the tool of the log return values of
the variables being monitored.®

Network traffic is fed into the Python script either via a live cap-
ture device (e.g., the Wireshark program) or from a file of previ-
ously captured data that is played back via a script which can
maintain the original timing of the events, or resample the data
to allow the playback of different timescales (see below).

For purposes of illustration, the example chosen here sonifies
the log returns of the following time-dependent network traffic
data items: number of bytes sent, number of packets sent, number
of bytes received, number of packets received by the network
which we call bs, ps, br, prrespectively. These variables represent
the total number of packets and bytes sent and received in a given
time interval, t, t’. As SOC has been shown to exist across multiple
timescales, network traffic could be sampled at any regular inter-
val. The size of the interval is not specified and is at the discretion
of the user. SOC properties can be observed by comparing the log
return values of successive samples of time series data. Thus, in
this example we calculate four log return values for the variables
bs, ps, br, pr:

rbs = In [bs(t)] — In [bs(t)] (2)
rps = In [ps(t")] — In [ps(t)] (3)
rbr =In[br(t)] — In [br(t)] (4)
rpr = In[pr(t')] — In [pr(t)] (5)

This may result in negative values for the log return which can be
used to indicate the direction of a SOC event’s change in level (i.e.,
an increase in value means a step up to the next level of steady state,
whilst a decrease means a step down). Therefore, the system can also
use absolute (unsigned) log return values to keep all values positive
(which might be done if one were interested only in large changes of
level regardless of direction). In addition, all values can be squared
with the sign retained or discarded. Thus, if using absolute values,
the squares will all be positive, but if signed values are used, then
the squares retain the sign of the original value (e.g., a log return of
—2 becomes —4 when using signed values, but 4 when using absolute
values). The reason for squaring the values is discussed in Section 4.
The Python script calculates the log return values and feeds them
as input to the sonification engine. Each log return value is used to
control the parameters of an individual sound generator (or voice),
a technique known as parameter-mapping sonification, or PMSon,
(see Grond and Berger [27] for a detailed discussion of PMSon).

3.1. Sonification parameters

There are many possible mappings between the input data val-
ues and the various parameters that affect the audio. For example,
this may be done by increasing/decreasing the amplitude, altering a
sound’s position in a sound field (e.g., left-right pan in a stereo field,
front/back/left/right in a surround-sound field, or front/back/left/
right and azimuth in a full three-dimensional sound field), altering
the sound’s phase, or altering its spectral characteristics (e.g., by
changing the parameters of a filter). The following sections describe
the processes that were used in the system.

5 The system and example audio output can be accessed from the project’s
repository at https://github.com/paulvickers/nuson-SOCS [28].

3.1.1. Scaling

SOC evidences itself through orders-of-magnitude
changes in the log return values but audio processing units tend
to require restricted ranges of digital input values (say,
0...127, 0...15, —256...255, etc.). Therefore, it was necessary
to scale all incoming data so a scaler module was built that takes
four arguments: the minimum and maximum values of the input
range and the minimum and maximum of the desired output
range. Any any value received on the scaler’s input is converted
to a corresponding value in the specified output range.

3.1.2. Amplitude control

An amplitude control module was constructed that adjusts the
amplitude, or level, of the output sound according to the value of
the module’s input variable, in this case, the log return values.
The lower the log return value the quieter the sound, the higher
it is the louder the sound that is played back. Thus, the real-time
monitoring of the network leads to constant fluctuations in the
amplitude of the output, but only large changes in level are readily
perceived.

3.1.3. Filtering

There are several ways that the spectral characteristics of an
audio signal may be processed, each of which will cause a change
in the timbre of the audio. For this example the input log return
values were used to determine the coefficients of a biquad filter
which has been configured with initial values of {1.41409,
—0.9,1,-1.41421,1} which defines a notch filter. The advantage
of a biquad filter is that it offers a richer set of filtering options than
a single type of dedicated (e.g., band pass) filter and its coefficients
can be altered in run time to changed the sound processing in real
time. If desired, a basic band pass (BP) filter may be used by swap-
ping the 1oopChannel3 sub patch for the 1oopChannel sub patch
which is available in the abstractions folder of the project’s
repository [28]. A notch or band-reject filter prevents frequencies
within a certain range from passing. A BP filter, by contrast, allows
frequencies within a certain range of the central frequency to pass
unhindered and attenuates frequencies falling outside this range. In
the Pure Data language the range’s width is specified by the BP fil-
ter’s resonance input. The higher the resonance the wider the band
of frequencies that are allowed to pass through. The choice of filter
depends on the kinds of sounds being loaded into the system. The
disadvantage of the BP filter was that it tended to muffle the sound-
scape during normal operation, whilst the notch filter retained the
soundscape’s original brightness and altered it only when large
changes were detected in the log returns.

A filtering unit was used for each audio channel. The filter’s ini-
tial parameters are hard-coded into the 1oopChannel3 sub patch
to best fit the sonic material being used but ultimately it is
intended to expose this functionality to the end user. The value
of the input variable being monitored by each channel was then
used to alter the filter’s response in real time. This means that
the timbre of the audio changed as the input variable changed.

3.1.4. Sampled and synthesized voices

Because the prototype system monitored four variables four
voices or channels were used, one per variable. The system can
be extended to include as many voices as there are data dimen-
sions to be monitored. A voice can be a synthesized tone generated
in real time or it can be a segment of sampled audio that is played
back as a repeated loop. The loop playback method incorporates a
sub patch designed by Farnell [29] which loads a wave audio file
and plays it continuously, restarting it when it reaches the end.
The amplitude of the loop is controlled by the amplitude control
module and its timbre is controlled by the filter above. Thus, the

http://puredata.info
https://github.com/paulvickers/nuson-SOCS

P. Vickers et al./Displays 47 (2017) 12-24 19

log return value of each data stream is used to modulate the corre-
sponding voice.

The loops and synthesized voices could, in principle, be any
sound, but it is recommended to use sounds that complement each
other (e.g., the different sounds of a natural ecology) to minimize
perceptual distraction. In the version described here, the channels
contained different sounds that combined to make a countryside
soundscape. Any wave files can be loaded into the system. For
the examples described here voice 1 was mapped to a woodland
sound with a variety of bird calls. Voice 2 used a recording of a run-
ning stream, and voice 3 used a recording of wind. All the audio
files were downloaded in mp3 format from the freeSFX web site
[30] (country_sounds.mp3, stream02.mp3, and vientos.mp3), edi-
ted for length, and exported as wave audio files. Voice 4 used a syn-
thesized rain sound; the sub patch for generating the rain sound
was taken from Farnell [29]. This enables the various audio chan-
nels to be attended to as a single coherent whole, but alterations
in any single channel will stand out.

3.2. System architecture

Fig. 3 shows the architecture of the sonification design used for
sonifying four data streams. Each of the numbered items in Fig. 3 is
explained below.

Capture network
traffic

A\

Select variables

A\

Calculate log
returns

1. Capture NETWORK TRAFFIC: Network traffic is captured from a log file
or a live packet sniffer program by the custom Python script.

2. SeLect variaBLES: The variables chosen here are bs, ps, br, pr (see
above).

3. CALCULATE THE LoG RETURNS: Calculation of the log returns is done in
the Python script and the values fed to the sonification engine
built in Pure Data.

4, Scater: This module scales the input values to the ranges
required by the various audio processing units.

5. AmpuiTUDE conTROL: Modulates the amplitude of the voice by the
log return value.

6. rLTER: Alters the parameters of the band pass or biquad filter
according to the log return value.

7. Voice n roor: A looped sample playback. The amplitude of the
loop is controlled by the ampLiTuDE conTROL (above) and its timbre
is controlled by a FiLTER above.

8. Voice n (syNTHESIszED TONE): A synthesized rather than sampled
sound channel.

9. Mixer: The four audio channels are combined into a single stereo
output which is then sent to the audio system of the host
computer.

Fig. 4 shows a screen shot of the application as it looks to the
user. The application has four principal sections: network input

rpr

°|Scaler | |Scaler | |Scaler | |Scaler ||Scaler | |Scaler | |Scaler | |Scaler |

\ €

°A

mplitudeXo\n‘t:ﬂ/ﬁ

P filter AmplitudeYtrol/gP filter

Ampmude\in‘ryép filter Amplitudewiol/éP filter

Voice 1 (loop) Voice 2 (loop)

Voice 4 e

(synthesized
tone)

Voice 3 (loop)

Mixer

Output audio

Fig. 3. Schematic view of the SOC sonification system for four network traffic variables: number of bytes sent (bs), number of packets sent (ps), number of bytes received (br),

number of packets received (pr).

20 P. Vickers et al./Displays 47 (2017) 12-24

(@) (] % networkSOC.pd
r vLR1 r vLR2 r vLR3 r yIR4
o . — e
= r tbsr =
¢ " T patcelt R1 1RZ2 183 1R¢
stConnect messageCounter %2‘}‘5)?}“ catch~ R
DOconnect [oisconnect 1239996 Messages_processed /_{'_ V

L -
unpack s f _f f_f f Unpack the five log return values s ctr RENDER/networkSoc. wav volme O
\ —— = e

——
— Oistart_rec [stop_rec | joutput~[5

s msg h S tosr bd -a-/ —— Mute Mute Mute Mute
- one = X O O
pd tap pd tap pd tap | |pd tap
Dlon @ore || Con Wore || Clon Mort | | Dor- Mot
"? 1r1 és' 1r2 'J'; 1r3 ‘J'; 4 I Sent+Received_Bytes_(actual)
unningAaxim Change
=0.07802 B72222 Current i.“
E.Olub? Largest
B Sent_Bytes Sent_Packets Received_Bytes Received_Packets
rirl r chl| r 1r2 r ch2| r 1r3 rch3 r lré r ché
i e B — = = = =
loopChannel3 -10 10 300 1 loopChannel3 -10 10 300 I loopChannel3 -10 10 300 I rainChannel
logReturn logReturn logReturn logReturn
O T JCeersesDoed [T JBe2696iood [T]Ze.02022oad [I | Zo.01
inMin inMax outMin outMax inMin inMax outMin outMax inMin inMax outMin outMax Frea FilterAmp
Zlo To 3eo Ti00_ Clo To oo Tooo_ Z10 |To |3e0 oo _ 7.69 300 15
3 3 4 & =
— — —

r 1r1 s vLR1 ir 1r2 s vLR2 r 1r3 s vLR3 I 1ré

Reset [Reset[JReset [JReset [[JJReset [Reset [JJReset [JReset [[JReset [Reset [JReset [JReset [JReset [Reset [JReset [jReset
pike Clip? Max Min pike Clip? Max Min pike Clip? Max Min Spike Clip? Max Min
-10.9977 ---- | 13.82 -13.9 | @ === | 2.455 -7.66 | -10.9977 ---- | 13.82 -13.9 | @ === | 2.455 -7.66

L o A I

r tbsr gictn
T ——

totalTraffic [)Clear

Fig. 4. The socs application. Section A deals with reading the network traffic from the capture device. Section B contains the voice definitions to which each traffic variable is
mapped. Section C is a mixer to convert the four separate audio streams into a single stereo feed. Section D is a graphical display of the combined variables being monitored.
The channel graph plots are updated more frequently than the aggregate graph plot.

(A), channel processing (B), the mixer (C), and the graph view (D). The mixer section (C) allows the relative amplitudes of the four
The network input section contains a module that receives the log channels to be set. These four channels are then mixed down to
returns generated by the trafficSender.py Python script. The a single stereo output which is sent to the host computer’s audio
channel processing section contains four similar units: three for hardware. The audio output can also be captured in real-time

dealing with audio loop playback and one for dealing with synthe- and saved to a wave audio file via the ‘start_rec’ ‘stop_rec’ buttons.
sized tone playback. Each of the four units contains a scaler module The graph view (D) plots the aggregate network traffic in real-time
and a filter module. The three loop-based units also contain mod- which allows visual reference to be made when something of
ules for loading and playing back the pre-recorded audio files. The interest is heard.

synthesizer unit contains modules for generating and filtering The network input section (A) contains taps to turn the four

white noise. Each of these four channel processors contain a data streams that are being sonified on and off. This allows the
real-time graphic plot which shows the values of the log returns. operator to generate an overall soundscape of all the network

P. Vickers et al./Displays 47 (2017) 12-24

variables being monitored or to focus on an desired subset. Addi-
tionally, the mixer section (C) allows the overall balance between
the soundscape channels to be adjusted as desired. For example,
if the operator wished to focus more attention on the bytes sent
per time interval then they could raise the level of voice 1.

4. Discussion

The system was driven by a number of traffic data sets captured
from live networks. Traffic data were aggregated over 1 s intervals
and the number of bytes and packets sent and received per interval
were fed to the socs application via the Python script. Each time a
set of log return values is received the system uses the values to
modulate the four respective audio channels.

When the traffic is exhibiting normal patterns small fluctua-
tions in log return values do not lead to very noticeable changes
in the soundscape, either in amplitude or timbre. Using the map-
pings described above one hears a soundscape comprising the
combination of sounds described above.

When one or more very large log returns occur (such as would
be expected during a dynamic system relaxation event) the corre-
sponding soundscape experiences a very noticeable change: the
amplitude varies greatly and the timbre alters as filters are
adjusted (see Fig. 8). In practice this was experienced as a sudden

Table 1
Example sound files.

21

attenuation, loud rumble, or click (depending on the filter being
used and whether signed, unsigned, or squared log return values
were being used).

4.1. Audio examples

Audio files demonstrating the system output can be found in
the project repository [28]. Table 1 lists the available example
audio files.

Running the Python script at different playback rates and with
signed, unsigned, and squared log return values leads to different
auditory outputs. For example, running the system using signed
log returns (the system default) reveals that the traffic spikes
shown in Fig. 5 are both negative. The sound file spike2_1s_.
wav demonstrates that at a playback speed of 1 s per record (the
timescale at which the traffic data were captured) the negative
spikes reveal themselves as gaps in the soundscape. In this case,
the woodland sounds and the wind sound are attenuated as these
are mapped to the sent and received bytes variables. However,
when playing back the traffic data at a higher rate, as one might
do when spooling through a log file to get a feel for where any
problems might lie, these attenuations are not so perceptible. In
this case it is preferable to run the system using absolute
(unsigned) log return values. This renders all large changes as

Audio file name

Description

normal.wav
spike2_1ls_a.wav
spike2_1ls_ a.wav
spike2_20ms_ a.wav
multiSpike_ls_a.wav
multiSpike_ls_a.wav
multiSpike_ls_a.wav
multiSpike_ls.wav
multiSpike_ 20 ms_ a.wav
multiSpike_20ms.wav
multiSpike_20ms_as.wav

No large log returns

Two audible spikes using unsigned (absolute) log returns, see Fig. 5
Same spikes but using signed log returns

Same spikes, but at 20 ms speed, absolute log returns

Multiple spikes, 1 s playback, absolute log returns, see Fig. 7

Same spikes, 1 s playback, but squared log returns

Same spikes, 1 s playback, squared log returns retaining original sign
Same spikes, signed log returns, see Fig. 6

Same spikes, 20 ms playback, absolute log returns

Same spikes, 20 ms playback, signed log returns

Same spikes, 20 ms playback, squared log returns

All files available in the examples directory at https://github.com/paulvickers/nuson-SOCS

Sent_Bytes Sent_Packets Received_Bytes Received_Packets

r r chl r (r2 r r r ch4
'f. 'f. Z ——
loopChannel3 -18 18 308 11@ loopChannel3 -18 18 368 18& loopChannel3 -18 18 368 1@t:| rainChannel
logReturn logReturn logReturn logReturn
B Do |_L_J8 Dow B Ohow|C 1 13
inMin inMax outMin outMax inMin inMax outMin outMax inMin inMax outMin outMax Freq FilterAnp
Zle e 3ee | qioo_ Zle e 3a | gooo_ Sl e 3me Zoa 37 B T
7 7 & & =
—— — =
I lri s vLR1 I lrz2 s vLR2 e lr3 s vLR3 r lr4
OJReset. [JReset [Rreset [ORreset] [[Jreset. [Jreset [TRreset [OReset, [[reset. [Reset [TReset [Oreset] [[JReset [JReset [TReset [Oreset
spike Clip? Max Min bpike Clip? Max Min bpike Clip? Max Min Bpike Clip? Max Min
8 == 1.831 4.1 |8 == 1.765 -1.36 | 8 = 1.831 411 |8 = 1.785 -1.36
Ww-\»wm A VVWW ~—~ M —_

Fig. 5. This screen grab shows the double spike in the sent bytes and received bytes variables. The log returns are negative jumps as shown by the descending peaks. The
sound files spike2_1s_a.wavand spike2_1s.wav demonstrate how this sounds at playback speeds of 1 s per record, using the absolute and signed log returns respectively.
spike2_20ms_a.wav is the same traffic segment but played back at 20 ms per record and using absolute (unsigned) values.

https://github.com/paulvickers/nuson-SOCS

22

positive spikes which results in all spikes being heard as large
increases in amplitude and filtering effects. The sound file spike2_
20ms_a.wav is a recording of the system processing the traffic data
at 20 ms per record. The two spikes are now clearly audible.

Fig. 6 shows a series of spikes in the traffic data. The sent and
received bytes variables each have three spikes the first two being
negative and the third positive, while the sent and received packets
variables have a single positive spike each. In the audio file mu1-
tiSpike_ls.wav the negative spikes are clearly heard as gaps in
the soundscape whilst the positive spike is very audible, particu-
larly in the wind sound which represents the received bytes
variable.

Using absolute log returns the spikes appear as in Fig. 7. This
time, at a playback rate of 1s per record (multiSpike_ls_abs.
wav) the first two spikes in the sent and received bytes are heard

P. Vickers et al./Displays 47 (2017) 12-24

as a very loud noise signal, which is made even stronger by the sent
and received packets spikes coinciding. The third spike is domi-
nated by the wind sound of the received bytes channel. The same
spikes when played back at 20 ms per record are much shorter
and more percussive.

4.2. The situational awareness loop

On hearing an events such as described above (situational
awareness level 1 - Perception) the network administrator would
be drawn to inspecting the state of the network (situational aware-
ness level 2 - Comprehension) to decide whether any action needs
to be taken (situational awareness level 3 - Projection). After
deciding what action to take (level 3) then comes the stage of
managing the action, which itself requires situational awareness

Sent_Bytes Sent_Packets Received_Bytes Received_Packets

r r chl r Ir2 r r r ch4
‘E‘. T. Z ——
loopChannel3 -18 18 308 11@ loopChannel3 -18 18 388 18& loopChannel3 -16 168 368 18D rainChannel
logReturn logReturn logReturn logReturn
g Oload g Ooad B Oleoad| | | | &
inMin inMax outMin outMax inMin inMax outMin outMax inMin inMax outMin outMax Freq Filteramp
Zle | Zo Fee | Twen_ Sle |20 Fee | Zeoo_ Sle | Zp Fee | Ten _ 3.7 5w I
7 7 & & =
—— — =

r Iri s vLR1 I lr2 s vLR2 I Ir3 s vLR3 r lr4

Reset [J]Reset [OReset [DReset] [[TReset [J]Reset [Oreset [reset] [[Jreset [J]reset [DReset [Reset] [[JReset []Reset [Reset [jReset
pike Clip? Max Min pike Clip? Max Min ap\ke Cllp7 Max Min Bpike Clip? Max Min
=12.3254 Clip i51.9 -12.3 |8 Clip 44.38 -6.66 -12 3254 Cllp 1519 -12.3 | @ Clip 44.38 -6.66

b

—

N

Fig. 6. This screen grab shows a series of spikes in the sent bytes and received bytes variables. The audio file multiSpike_ls.wav demonstrates how this sounds at a
playback speed of 1 s per record using signed log return values. There is an audible difference between the positive and negative traffic changes. However, notice how the
peaks are not salient when playing back signed values at the faster rate of 20 ms as in multiSpike_ 20 ms.wav - the peaks occur at around the 1.5 s mark in the audio file.

Sent_Bytes Sent_Packets Received_Bytes Received_Packets

r Irl r chl r (r2 r ch2 r lr3 r ch3 r lr4 r ch4
b - '=~_E ‘=‘\E
loopChannel3 -16 18 308 11@ loopChannel3 -16 16 368 1@@ loopChunnelS -16 16 368 mt:l ramChannel
logReturn logReturn logReturn logReturn
[T JGaseseeDiood| [[] Gaseat Dhond| [5.32609 Do =
inMin inMax outMin outMax inMin inMax outMin outMax inMin inMax outMin outMax Freq FilterAmp
Sl | Zo Fee | Tee_ Ste (Zo Feo Zeoo_ Sl | Zo Fee Too _ F.750 500 | I5
7 7 & = =

I lrl s vLR1 r lr2 s vLR2 I lr3 s vLR3 r lr4

Reset [[)]Reset [DjReset [JReset :]Reset Oreset Oreset [Oreset] [[Oreset [JReset [TReset [OReset] [[JReset [JReset [TReset [Dreset
pike Clip? Max Min Bpike Clip? Max Min pike Clip? Max Min spike Clip? Max Min
=12.3254 Clip 451.9 -16.8 | B8 Elip 44.38 -6.66 | -12.3254 Clip 451.9 -16.8 | B8 LClip 44.38 -6.66

N A N _

Fig. 7. This screen grab shows the same series of spikes as Fig. 6 but this time using the unsigned log returns. The sound files multiSpike_ls_a.wav and
multiSpike_20ms_ a.wav are recordings of this traffic segment played back at 1 s and 20 ms per record respectively. In both cases the traffic peaks are quite noticeable. The
file multiSpike_20ms_ as.wav demonstrates how squaring the log return values leads to an even more marked effect.

P. Vickers et al./Displays 47 (2017) 12-24

23

Sent_Bytes Sent_Packets Received_Bytes Received_Packets

[1L r chl r 1r2 r ch2 r1r3 r ch3 r 1r4 r ch4
= 2 = e e e ——
loopChannel3 -10 10 300 1 loopChannel3 -10 10 300 I loopChannel3 -10 10 3@Q 1 rainChannel
logReturn logReturn logReturn logReturn
Geo26966tood| [] So01348toad [1 5.026966toad| | I | Sole3
inMin inMax outMin outMax inMin inMax outMin outMax inMin inMax outMin outMax Freq FilterAmp
Cio | To | 3eo | Tw0) Clo | To | 3eo) Teoo. Cio | o) 3e0 | oo | 7.693 Boo | Ts
7 7 0 & & =
r— p—— =

L 1rl s VvLR1 r 1r2 s vLR2 Ir 1r3 s vLR3 I 1ré

Reset [Reset[JReset [JReset [jReset [Reset [JReset [Reset [D[Reset [Reset [D[Reset [Reset [[Reset [Reset [OjReset [JReset
pike Clip? Max Min pike Clip? Max Min pike Clip? Max Min pike Clip? Max Min
I=13.5911) |==-= 13.82 -13.9 | @ [E=== 2.455 |-7.66 | |-13.5911 ---- 13.82 -139 | @ [5=== 2.455 -7.66

»—A,—W—w-vw—w—«

N

Fig. 8. This screen shot of the voice channel section shows log return spikes occurring on all four channels with the largest values occurring in the sent bytes and sent packets
streams. These spikes generate a noticeable increase in the amplitude and brightening of the timbre of the soundscape.

as actions are taken to address the situation. The final step in all UK
military decision support methodology is to ask the question “has
the situation changed?”, thus restarting the OODA loop.

In a healthy network one would expect a number of significant
changes in the soundscape over time as relaxation events occur
(much as a sandpile would undergo shifts in its topology as sand
is added to it over time). Some of these events may go unnoticed
by the administrator (if, for example, they left the monitoring sta-
tion for a short period of time) but individual events are not a mat-
ter of great concern. What will be of particular interest is when
there is an extended series of repeated high log return values
which might indicate growing instability in the network. An
extended period of increased soundscape amplitude signals as a
clear alert to the administrator.

4.3. Timescales

The system was run with log return intervals of 1 s and 20 ms.
The traffic data set used in the examples was collected at 1 s inter-
vals, so the 20 ms playback was done in a post hoc examination
mode.

The running of the socs system at a higher rate than the traffic
data’s initial sample rate allowed historical feeds to be listened
to post hoc in a manner analogous to spooling quickly through
an audio tape (the main difference being that there is no conse-
quent alteration of pitch). This means that logs can be auditioned
quickly and interesting areas of activity spotted. This is useful for
post-incident investigations and means that the system can be
used for more than live monitoring. The Python script can be sup-
plied with run-time arguments to focus on certain sections of the
traffic data, and/or to slow down playback once a particular point
is reached. For example, the command:

python trafficSender.py —t 0.02 — f 6000 —w 6960
— £ 7100

tells the Python script to send unsquared signed log returns (the
default) to the socs system at a playback rate of 20 ms (0.02 s), start-
ing at record number 6000 and slowing down to a default rate of 1 s
per record once record number 6960 is reached, and then stopping
at record number 7100.

5. Concluding remarks

The combination of using a system’s self-organized criticality as
the underlying data set for situational awareness and a tool for
sonifying this SOC offers a number of potential advantages. First,
because SOC is an emergent property of the network as a whole,
and can be seen at different timescales, it means that one can get
an impression of the overall state of a network by monitoring a rel-
atively small number of data streams, thereby ameliorating the
problems of extreme volumes and speeds of data identified by pre-
vious researchers. Second, the sonification approach allows for the
real-time presentation of simple, but relevant data via a medium
that lets network administrators work at situational awareness
levels 1 and 2 using without having to keep a visual focus on a
complex graphical display. Third, because SOC manifests itself frac-
tally and across timescales, whatever data sampling interval is cho-
sen, the network SOC ought still to be perceptible regardless of the
interval over which traffic data are sampled and aggregated.

While the work described here focused on the traditional traffic
metrics of bytes and packets sent and received, it is important to
explore what other variables and characteristics are implicated in
a network’s SOC and this is the subject of ongoing work. For exam-
ple, rather than using log returns, Valverde and Solé [23] explored
network criticality through packet density, congestion, and the
“critical load rate” measured by “/.”. It will be instructive to inves-
tigate how different views of network behaviour exhibit SOC and
how each of these can be used in the situational awareness loop.

The present system allowed the creation of a soundscape of up
to four independent audio streams (mixed down to a pair of stereo
channels). The underlying system architecture promotes interac-
tivity by letting the user select the combination of incoming data
streams to be sonified and the sonic balance of the auditory
streams.

Another aspect of the ongoing work is to explore combining
sonification with a multitouch display to create a richer interaction
experience. The following example use case describes how this
might be realized. A possible intrusion is detected through an
anomalous change in the SOC variables. The administrator now
wishes to investigate the network’s behaviour. To do this a diagram
showing a network setup is projected onto a multi-touch display.

24 P. Vickers et al./Displays 47 (2017) 12-24

The data indicate a problem between the router and the internet,
and between the switch and the laptop. A tangible user interface
object (e.g., a cube) with a fiducial marker on its bottom surface
is placed above the router. Another object is placed on the channel
between the switch and the laptop. A camera beneath the display
recognizes the fiducials which are coded to specific traffic data
variables. Rotating the objects controls the auditory and/or visual
parameters of the data streams. Visual feedback can be projected
onto the surface (e.g., printing data above the interface object) with
auditory feedback being via loudspeakers or headphones. The
interface objects become probes to monitor chosen network loca-
tions for particular events or data types. In this way the adminis-
trator can gain intelligence about the state of the network in a
hands-on way.

Acknowledgements

This work was funded by the United Kingdom’s Technology
Strategy Board (Innovate UK) (Grant No. BKOO8B). The authors
gratefully acknowledge the input of Jonathan Christison, a final-
year student on Northumbria University’s BSc Ethical Hacking for
Computer Security who provided assistance with constructing
the Python packet sniffer. This system described in this article
was the subject of UK Patent Application No. GB1205564.6.

References

[1] W.S. Angerman, Coming Full Circle with Boyd’s OODA Loop Ideas: An Analysis
of Innovation Diffusion and Evolution Master’s Thesis, Airforce Institute of
Technology, Wright-Patterson AFB, Ohio, USA, 2004.

[2] M. Endsley, Toward a theory of situation awareness in dynamic systems, Hum.
Factors 37 (1995) 32-64.

[3] M. McNeese, Perspectives on the role of cognition in cyber security, in:
Proceedings of the Human Factors and Ergonomics Society 56th Annual
Meeting - 2012, 2012, pp. 268-271.

[4] T. Fairfax, C. Laing, P. Vickers, Network situational awareness: sonification &
visualization in the cyber battlespace, in: M.M. Cruz-Cunha, .M. Portela (Eds.),
Handbook of Research on Digital Crime, Cyberspace Security, and Information
Assurance, Advances in Digital Crime, Forensics, and Cyber Terrorism, IGI
Global, 2014, pp. 334-349.

[5] P. Vickers, Sonification for process monitoring, in: T. Hermann, A.D. Hunt,].
Neuhoff (Eds.), The Sonification Handbook, Logos Verlag, Berlin, 2011, pp. 455-
492.

[6] P. Vickers, Ways of listening and modes of being: electroacoustic auditory
display, J. Sonic Stud. 2 (2012). <http://journal.sonicstudies.org/vol02/nr01/
a04>.

[7] T. Hermann, A.D. Hunt,]. Neuhoff (Eds.), The Sonification Handbook, Logos
Verlag, Berlin, 2011.

[8] C. Guo, L. Wang, L. nv Huang, L. Zhao, Study on the internet behavior’s activity
oriented to network survivability, International Conference on Computational
Intelligence and Security, 2008. CIS '08, vol. 1, IEEE, 2008, pp. 432-435.

[9] E.D. Mynatt, M. Back, R. Want, M. Baer,].B. Ellis, Designing audio aura, in: CHI
'98: Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998,
pp. 566-573.

[10] M. Gilfix, A.L. Couch, Peep (the network auralizer): monitoring your network
with sound, in: 14th System Administration Conference (LISA 2000), The
USENIX Association, New Orleans, Louisiana, USA, 2000, pp. 109-117.

[11] M. Kimoto, H. Ohno, Design and implementation of Stetho - network
sonification system, in: Proceedings of the 2002 International Computer
Music Conference, ICMA, Géteborg, San Francisco, 2002, pp. 273-279.

[12] M. Ballora, B. Panulla, M. Gourley, D.L. Hall, Preliminary steps in sonifying web
log data, in: E. Brazil (Ed.), 16th International Conference on Auditory Display,
ICAD, Washington, DC, 2010, pp. 83-87.

[13] M. Ballora, N.A. Giacobe, D.L. Hall, Songs of cyberspace: an update on
sonifications of network traffic to support situational awareness, Proc. SPIE
8064 (2011). 80640P1-80640P6.

[14] M. Ballora, N.A. Giacobe, M. McNeese, D.L. Hall, Information data fusion and
computer network defense, in: C. Onwubiko, T. Owens (Eds.), Situational
Awareness in Computer Network Defense: Principles, Methods and
Applications, IGI Global, 2012.

[15] E.P. Blasch, S. Plano, JDL level 5 fusion model: user refinement issues and
applications in group tracking, Proc. SPIE, vol. 4729, 2002, pp. 270-279.

[16] R. Giot, Y. Courbe, InteNtion-interactive network sonification, in: M.A. Nees, B.
N. Walker,]. Freeman (Eds.), Proceedings of the 18th International Conference
on Auditory Display (ICAD 2012), Georgia Institute of Technology, 2012, pp.
235-236.

[17] K.E. Wolf, R. Fiebrink, SonNet: a code interface for sonifying computer network
data, in: NIME'13 - 13th International Conference on New Interfaces for
Musical Expression, Daejeon + Seoul, Korea, 2013, pp. 503-506.

[18] D. Worrall, Realtime sonification and visualisation of network metadata (the
NetSon project), in: K. Vogt, A. Andreopoulou, V. Gourdazi (Eds.), ICAD 15:
Proceedings of the 21st International Conference on Auditory Display, Institute
of Electronic Music and Acoustics (IEM), University of Music and Performing
Arts Graz (KUG), Graz, Austria, 2015.

[19] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of the
1/f noise, Phys. Rev. Lett. 59 (1987) 381-384.

[20] H.J. Jensen, Self-Organized Criticality, Cambridge University Press, Cambridge,
1998.

[21] W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the self-similar nature
of Ethernet traffic, SIGCOMM Comput. Commun. Rev. 23 (1993) 183-193.

[22] M.E. Crovella, A. Bestavros, Self-similarity in world wide web traffic: evidence
and possible causes, IEEE/ACM Trans. Netw. 5 (1997) 835-846.

[23] S. Valverde, R.V. Solé, Self-organized critical traffic in parallel computer
networks, Physica A 312 (2002) 636-648.

[24] C.-X. Yang, S.-M. Jiang, T. Zhou, B.-H. Wang, P.-L. Zhou, Self-organized
criticality of computer network traffic, 2006 International Conference on
Communications, Circuits and Systems Proceedings, vol. 3, IEEE, 2006, pp.
1740-1743.

[25] K. Fukuda, H. Takayasu, M. Takayasu, Origin of critical behavior in ethernet
traffic, Physica A 287 (2000) 289-301.

[26] N.S.D. Brito, B.A. Souza, F.A.C. Pires, Daubechies wavelets in quality of electrical
power, Proceedings. 8th International Conference On Harmonics and Quality
of Power Proceedings, 1998, Athens, vol. 1, 1998, pp. 511-515.

[27] F. Grond,]. Berger, Parameter mapping sonification, in: T. Hermann, A.D. Hunt,
J. Neuhoff (Eds.), The Sonification Handbook, Logos Verlag, Berlin, 2011, pp.
363-398.

[28] P. Vickers, nuson-SOCS: Self-organized Criticality Sonification (2016), http://
dx.doi.org/10.5281/zenodo.49844.

[29] A. Farnell, Designing Sound, MIT Press, 2010.
edu/books/designing-sound>.

[30] freeSFX, 2016. <http://www.freesfx.co.uk/>.

<https://mitpress.mit.

http://refhub.elsevier.com/S0141-9382(16)30064-6/h0005
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0005
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0005
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0005
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0010
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0010
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0015
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0015
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0015
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0015
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0020
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0020
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0020
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0020
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0020
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0020
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0020
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0020
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0025
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0025
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0025
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0025
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0025
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0025
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0025
http://journal.sonicstudies.org/vol02/nr01/a04
http://journal.sonicstudies.org/vol02/nr01/a04
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0035
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0035
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0035
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0035
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0035
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0040
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0040
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0040
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0040
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0045
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0045
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0045
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0045
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0045
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0050
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0050
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0050
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0050
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0055
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0055
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0055
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0055
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0060
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0060
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0060
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0060
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0060
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0065
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0065
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0065
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0070
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0070
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0070
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0070
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0070
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0070
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0070
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0075
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0075
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0075
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0080
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0080
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0080
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0080
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0080
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0080
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0080
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0080
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0085
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0085
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0085
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0085
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0090
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0090
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0090
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0090
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0090
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0090
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0090
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0090
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0090
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0095
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0095
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0100
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0100
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0100
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0105
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0105
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0110
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0110
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0115
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0115
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0120
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0120
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0120
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0120
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0120
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0125
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0125
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0130
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0130
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0130
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0130
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0135
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0135
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0135
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0135
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0135
http://refhub.elsevier.com/S0141-9382(16)30064-6/h0135
http://dx.doi.org/10.5281/zenodo.49844
http://dx.doi.org/10.5281/zenodo.49844
http://https://mitpress.mit.edu/books/designing-sound
http://https://mitpress.mit.edu/books/designing-sound
http://www.freesfx.co.uk/

	Sonification of a network’s self-organized criticality for real-time situational awareness
	1 Introduction
	1.1 Sonification for network monitoring

	2 Self organized criticality in network traffic
	2.1 Identifying and measuring the SOC

	3 The SOC sonification system
	3.1 Sonification parameters
	3.1.1 Scaling
	3.1.2 Amplitude control
	3.1.3 Filtering
	3.1.4 Sampled and synthesized voices

	3.2 System architecture

	4 Discussion
	4.1 Audio examples
	4.2 The situational awareness loop
	4.3 Timescales

	5 Concluding remarks
	Acknowledgements
	References

