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a b s t r a c t 

Translating visual representations of real environments into auditory feedback is one of the key challenges in 

the design of an electronic travel aid for visually impaired persons. Although the solutions currently available 

in the literature can lead to effective sensory substitution, high commitment to an extensive training program 

involving repetitive sonic patterns is typically required, undermining their use in everyday life. The current study 

explores a novel sensory substitution algorithm that extracts information from raw depth maps and continuously 

converts it into parameters of a naturally sounding, physically based liquid sound model describing a population of 

bubbles. This approach is tested in a simplified wayfinding experiment with 14 blindfolded sighted participants 

and compared against the most popular sensory substitution algorithm available in the literature – the vOICe 

(Meijer, 1992) – following a short-time training program. The results indicate a superior performance of the 

proposed sensory substitution algorithm in terms of navigation accuracy, intuitiveness and pleasantness of the 

delivered sounds compared to the vOICe algorithm. These results should be applied to the visually impaired 

population with caution. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The technique of data sonification is used as an alternative or a com-

lement to data visualization for representing various actions, objects

r signals. Sonification can be defined as “a mapping of numerically rep-

esented relations in some domain under study to relations in an acoustic

omain for the purposes of interpreting, understanding, or communicating

elations in the domain under study ” ( Scaletti, 1994 ). Widely accepted

onification techniques include audification (i.e., direct playback of data

treams as sound waves), auditory icons (i.e., discrete environmental

ounds), earcons (i.e., discrete symbolic sounds), parameter mapping soni-

cation between data dimensions and auditory dimensions, and model-

ased sonification (i.e., based on dynamic models of virtual sounding

bjects) ( Dubus and Bresin, 2013; Hermann et al., 2011 ). 

Sonification is used in very different contexts to represent a great

ariety of data, ranging from molecular information ( Garcia-Ruiz and

utierrez-Pulido, 2006 ) to geophysical data ( Dell ’Aversana et al., 2017 ).

f particular interest are applications in health care, such as in mo-

or rehabilitation systems ( Avanzini et al., 2013; Rosati et al., 2011 )

here task-related auditory information is able to support motor learn-

ng and increases attention and engagement levels during rehabilita-
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ion tasks. Another widely explored area is that of electronic travel

ids ( Dakopoulos and Bourbakis, 2010 ) and other assistive technolo-

ies for visually impaired persons (VIPs) ( Csapó et al., 2015 ), where

onification techniques are designed to substitute visual information

 Kristjánsson et al., 2016 ). Unfortunately, the majority of the systems

xploiting such techniques are still in their infancy and have limited

unctionalities, small scientific and/or technological value and high cost

 Dakopoulos and Bourbakis, 2010 ). 

Available electronic travel aids for VIPs range from simple obstacle

etectors with a single range-finding sensor (e.g. ultrasound, infrared),

o environmental imagers employing data generated from visual repre-

entations acquired through camera technologies. The most common

onification schemes of obstacle detectors, which only receive range in-

ormation, are either earcons indicating the presence of an obstacle, or

n inversely proportional transform mapping one or more range read-

ngs to the loudness and/or pitch of synthetic sounds or musical tones

 Bujacz and Strumi łł o, 2016 ). On the other hand, environmental im-

gers (i.e., devices able to deliver a representation of the layout of an

nvironment) allow for greater flexibility in sonification mappings. The

ost significant example is provided by the well-known image sonifica-

ion algorithm used in the vOICe system ( Meijer, 1992 ). 
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Fig. 1. Simplified scheme of the proposed sensory substitution algorithm. 
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The vOICe algorithm can be thought of as an inverse spectrogram

ransform, i.e., a time-varying sound whose spectrogram approximately

atches an input grayscale image. In particular, the algorithm period-

cally scans the image from left to right, while associating each row to

 different sinusoidal oscillator with fixed frequency (in ascending or-

er from lower to upper rows) and using the brightness of each pixel in

urn to control the amplitude of the oscillator. The sound output is then

patialized left to right according to the current scanning point. It has

een shown that, following extensive periods of training and exploiting

he neural plasticity of the human brain, the vOICe sonification mech-

nism can lead to effective sensory substitution ( Merabet et al., 2009 ),

oth in object recognition ( Striem-Amit et al., 2012 ) and spatial learning

 Pasqualotto and Esenkaya, 2016 ). 

Although the original vOICe algorithm was designed to sonify 2D

rayscale images, its use in blind wayfinding is supported by the ob-

ervation that a depth map can be directly converted into a grayscale

mage where brightness corresponds to depth. The use of depth informa-

ion for the sonification of 3D scenes through either the original vOICe

lgorithm or slight variations of it has already been proposed and in-

estigated ( Capp and Picton, 2000; Stoll et al., 2015 ). Furthermore, im-

rovements to the pleasantness of sounds (such as using musical tones

nstead of pure sines) as well as to the spatial feeling and real-time con-

eyance of the sounds (e.g. presenting independently to each headphone

hannel simultaneous scans from the left and right edge to the central

olumn of the image) were proposed ( Balakrishnan et al., 2008 ). 

The main drawback of most existing sensory substitution devices

SSDs), including the vOICe, is that even though in some cases the con-

eyed auditory information can be successfully interpreted by naïve

sers, they demand extremely high commitment on the user ’s side.

 lengthy and strenuous training of up to one year is required in

rder to enable users to perform most tasks, thus undermining the

se of SSDs in everyday life ( Pasqualotto and Esenkaya, 2016 ). As

ontana et al. (2002) point out, the prolonged use of SSDs “leads to the

train of the user [...] due to the continuous listening of the same signal at

egular time intervals. This sound, even if spatialized, produces an unnatural

ffect and causes a progressive fatigue. ” Therefore, the choice of the type

f sound as well as the way it is generated should be regarded as a key

ssue in the design of any sensory substitution algorithm. 

The current study explores a novel model-based sonification algo-

ithm for translating continuous representations of a dynamic real envi-

onment, coded into sequences of depth maps, into auditory feedback.

he sensory substitution algorithm we propose is meant to be used for

eal-time blind wayfinding, with minimum latency between data acqui-

ition and sonification, and with available off-the-shelf hardware tech-

ologies. It was designed in an attempt to improve the vOICe algorithm

rom both an ergonomic and a functional point of view, eventually re-

ucing the required training time, and to be efficiently scalable depend-

ng on the available computational resources. The algorithm we pro-

ose here directly maps low-order statistics from the raw depth map

nto the parameters of a physically-based liquid sound model. In this

odel, physical descriptions of sound events are intentionally simpli-

ed to emphasize the most perceptually-relevant timbral features, and
10 
o reduce computational requirements as well ( Baldan et al., 2017 ). The

odel was specially selected and tuned in order to sound both natu-

al (yet significantly discernible from most daily environmental sounds)

nd aesthetically pleasant. 

The remainder of the paper is organized as follows. In Section 2 we

escribe the generation mechanism of liquid sounds and its use in the de-

ign of our fluid flow sensory substitution algorithm. In Section 3 we in-

roduce an experiment designed in order to assess the performance and

ndividual preference of the sensory substitution algorithm in a blind

ayfinding task with blindfolded sighted participants. Results are re-

orted in Section 4 and finally discussed in Section 5 , including their

pplicability to the visually impaired population. 

. Sensory substitution with liquid sounds 

The fluid flow sensory substitution algorithm that we propose in this

aper receives a sequence of depth maps as input. Each depth map is

ivided into 15 equally sized sectors given by the combination of 3 rows

nd 5 columns. Every sector corresponds to an independent and uncor-

elated instance of a liquid sound generator, and its position within the

epth map is spatialized in the frontal hemisphere, allowing for effec-

ive source separation. Fig. 1 reports a simplified scheme of the proposed

lgorithm. 

.1. Generation of liquid sounds 

The building block of the fluid flow algorithm is the liquid sound gen-

rator . In the physical world, liquid sounds are mostly caused by gas bub-

les trapped inside the liquid rather than by the liquid mass itself. For

his reason, sound is generated through a stochastic process modeling

he temporal evolution of a population of bubbles, a synthesis approach

reviously referred to as physically informed sonic modeling by granular

ynthesis ( van den Doel, 2005 ). The liquid sound generation algorithm

onsiders individual bubbles to be atomic units (or grains , according

o the granular synthesis terminology ( Roads, 1988 )), synthesized us-

ng the well-known physically based Minnaert model ( Minnaert, 1933 ).

pherical bubbles effectively act as exponentially decaying sinusoidal

scillators: the compressible gas region of the bubble, surrounded by an

ncompressible liquid mass, gradually dissipates the energy involved in

ts creation by a periodic pulsation, as it would happen in a spring-mass

ystem. 

Every single bubble k , whose impulse response is 

 𝑘 ( 𝑡 ) = 𝑎 𝑘 sin (2 𝜋𝑓 0 𝑘 𝑡 ) 𝑒 
𝜁𝑘 𝑡 (1)

s fully defined by means of its radius r k and depth factor D k , that

niquely determine the individual damping factor 𝜁k , resonant fre-

uency 𝑓 0 
𝑘 
, and amplitude a k as follows: 

𝑘 = 

0 . 13 
𝑟 𝑘 

+ 0 . 0072 𝑟 
− 3 2 
𝑘 

𝑓 0 
𝑘 
= 

3 
𝑟 𝑘 

𝑎 𝑘 = 𝐷 𝑘 𝑟 
3 
2 
𝑘 

(2)

ere the depth factor D k models the lumped effect of the depth of a

ubble, and the effect of different excitation strengths of the bubbles.
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ubbles that are submerged more will be attenuated more. Factor D k 

s a dimensionless number between 0 and 1, where 1 corresponds to a

ubble created at the surface and 0 to a fully submerged bubble. 

The creation of bubbles is then modeled as a Bernoulli process oc-

urring at audio rate with success probability 𝑝 = 1∕Λ, where Λ is the

verage bubble rate (bubbles per second). The radius of each success-

ully produced bubble k is set to 

 𝑘 = 𝑥 
𝛾𝑟 
𝑘 
( 𝑟 𝑀𝐴𝑋 − 𝑟 𝑀 𝐼 𝑁 ) + 𝑟 𝑀 𝐼 𝑁 (3)

here x k ∈ [0, 1] is a number drawn from a uniform distribution func-

ion, r MIN and r MAX are the minimum and maximum bubble radius val-

es, and 𝛾r is the radius gamma factor, which allows to increase the

atio of bigger bubbles relative to smaller bubbles (0 < 𝛾r < 1) or vice

ersa ( 𝛾r > 1). Similarly, the depth factor D k is set to 

 𝑘 = 𝑦 
𝛾𝐷 
𝑘 
( 𝐷 𝑀𝐴𝑋 − 𝐷 𝑀 𝐼 𝑁 ) + 𝐷 𝑀 𝐼 𝑁 (4)

here y k ∈ [0, 1] is a number drawn from a uniform distribution func-

ion, D MIN and D MAX are the minimum and maximum depth factor val-

es, and 𝛾D is the depth gamma factor, which allows to increase the ratio

f bubbles close to the surface relative to deeper bubbles (0 < 𝛾D < 1) or

ice versa ( 𝛾D > 1). 

Bubble sounds often exhibit a characteristic rise in pitch, especially

hen approaching the surface. The phenomenon is mostly caused by the

ressure reduction as the liquid mass above the bubble becomes thinner

nd thinner. The effect is modeled in the synthesis algorithm by a global

ise factor parameter 𝜉. Since bubbles with a rising pitch are created

lose to the surface, it seems reasonable to assume they are generally

ouder than average. This effect is modeled by a rise cutoff parameter

 𝜉 . When it is set to a value 0 < K 𝜉 < 1, only bubbles with a depth factor

 k > K 𝜉 have a nonzero rise factor 𝜉. According to the physically based

ubble sound model described in van den Doel (2005) , a rising bubble

s modeled by making its frequency time-dependent according to 

 𝑘 ( 𝑡 ) = 𝑓 0 
𝑘 
(1 + 𝜎𝑘 𝑡 ) (5)

here 𝜎k is the slope of the frequency rise related to the vertical velocity

f the bubble, modeled as 

𝑘 = 𝜉𝜁𝑘 . (6)

An implementation of the liquid sound generator described above

 fluid flow module) is included in the Sound Design Toolkit (SDT), 1 an

pen-source (GPLv2) library of physically based sound synthesis algo-

ithms for Max and Pure Data ( Baldan et al., 2017 ). In this implementa-

ion the stochastic process drives an oscillator bank, whose number of

oices can be set as a parameter. The size of the oscillator bank defines

he polyphony of the algorithm, i.e. the maximum number of bubbles

hat can be active at the same time. If the maximum number is exceeded,

 voice stealing mechanism takes place and the new bubble is assigned to

he oscillator that currently has the minimum instantaneous amplitude

nvelope, resetting all its parameters, base frequency included. Phase

lignment allows to avoid audible artifacts during the generation of a

ew bubble ( Spagnol et al., 2017a ). 

The liquid sound generator is a slightly improved version of the bub-

le simulator proposed by van den Doel (2005) . The main improvement

ith respect to the van den Doel simulator lies in the use of a single

ernoulli process for a population of bubbles with different radii (i.e.,

ith different base frequencies) rather than 50 Bernoulli processes each

et to a fixed base frequency. This strategy allows to represent bubbles

f arbitrary size, improving the versatility of the algorithm especially

ith small oscillator banks. 

.2. Model-based sonification 

A global d MAX parameter is defined in order to consider only those

oints in the depth map whose depth is no greater than this defined
1 http://soundobject.org/SDT/ . 

w  

t  

a

11 
arameter. Then, for each sector, two descriptive depth metrics are cal-

ulated: map density and average depth . Design choices for mappings be-

ween depth map properties and liquid sound features are the following:

• map density → average bubble rate; 
• average depth → maximum bubble depth factor. 

Map density 𝜌 is defined as the number of pixels with depth value no

reater than d MAX divided by the total number of pixels in that sector.

t is mapped to the average bubble rate Λ according to 

= 500 𝜌2 (7) 

o that the denser the sector, the more the generated bubbles. The up-

er limit of 500 bubbles/second was heuristically set following informal

nvestigations on the pleasantness and intelligibility of the associated

iquid sound. 

Average depth 𝑑 is defined as the mean depth value (in meters) of

ll pixels with depth no greater than d MAX in that sector. It is mapped

o the maximum bubble depth factor D MAX as 

 𝑀𝐴𝑋 = 

( 

𝑑 𝑀𝐴𝑋 − 𝑑 

𝑑 𝑀𝐴𝑋 

) 2 

. (8)

n this way, closer obstacles are transformed in a larger amount of bub-

les close to the surface of the water, thus increasing their average loud-

ess and sharpness. As an analogy, it might help to think of the scene as

 big aquarium seen from above, with the water surface just in front of

he observer and all objects producing bubbles. 

In order to provide a spatial dimension of the depth map, the sound

roduced by each liquid sound generator is binaurally spatialized by

apping the corresponding depth map sector ( R i , C j ) to the azimuth

nd elevation parameters ( 𝜃, 𝜙) of a generic HRTF filter as follows: 

= 45 𝑗 − 90 (9)

= 45 − 45 𝑖 (10)

here 𝜃 and 𝜙 are expressed in degrees with respect to the observer

ccording to a vertical polar coordinate system, 𝑖 = 0 , 1 , 2 is the row

umber (top to bottom), and 𝑗 = 0 , … , 4 is the column number (left to

ight). However, since elevation cues greatly differ from subject to sub-

ect ( Spagnol et al., 2011 ) and lead to high variance in vertical local-

zation performance with generic HRTFs ( Møller et al., 1996 ), elevation

nformation is redundantly coded into another liquid sound feature. In

articular, sectors belonging to different rows of the depth map are as-

igned different bubble radius intervals [ r MIN , r MAX ] as follows: 

 0 ∶ 𝑟 𝑀 𝐼 𝑁 = 0 . 2 mm , 𝑟 𝑀𝐴𝑋 = 1 mm ; 
𝑅 1 ∶ 𝑟 𝑀 𝐼 𝑁 = 1 mm , 𝑟 𝑀𝐴𝑋 = 5 mm ; 
𝑅 2 ∶ 𝑟 𝑀 𝐼 𝑁 = 5 mm , 𝑟 𝑀𝐴𝑋 = 20 mm . 

(11) 

hanks to the inversely proportional relation between bubble radius and

esonant frequency (see Eq. (2) ), the above heuristically defined inter-

als allow for different characteristic liquid sounds to be produced de-

ending on elevation, i.e., ranging from light, fizzy sounds for higher

levations (row R 0 ) to low, gurgling sounds for lower elevations (row

 2 ). 

Other parameters that define the liquid sound generator are kept

onstant. These include the radius gamma factor ( 𝛾𝑟 = 1 ), the minimum

ubble depth ( 𝐷 𝑀 𝐼 𝑁 = 0 ), the depth gamma factor ( 𝛾𝐷 = 1 ), the rise

actor ( 𝜉 = 0 . 5 ), and the rise cutoff ( 𝐾 𝜉 = 0 . 5 ). Both gamma factors are

et to 1 in order to preserve the uniform distribution of radius and depth

alues. On the other hand, the choices for the rise factor and rise cutoff

llow for an additional auditory depth cue. By combining Eqs. (8) and

 4 ) it can be shown indeed that the average depth value at which pitch-

ising bubbles start being produced ( D k > K 𝜉) roughly corresponds to

 ̄≈ 0 . 3 𝑑 𝑀𝐴𝑋 . This translates at auditory level into a peculiar boiling

ater sound for close objects, and the closer the object (i.e., the lower

he average depth value), the higher the number of pitch-rising bubbles

nd therefore the clearer the boiling effect. 

http://soundobject.org/SDT/
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2 https://structure.io/ . 
3 http://uk.mathworks.com/matlabcentral/fileexchange/42127-matlab- 

wrapper-for-openni-2-2 . 
A preliminary version of the fluid flow algorithm was previously pre-

ented by the authors in Spagnol et al. (2017a) . With respect to the pre-

ious version, the main improvements of the algorithm described here

ie in the representation of elevation information with different bubble

adius values, in using bubble depth as a proper physical depth indi-

ator rather than plain amplitude control, and in the use of the rising

itch cue for close objects rather than elevated objects. These design

hanges were suggested from both test results and informal comments

ollowing preliminary experimental trials with offline video sequences

 Spagnol et al., 2017a ), that highlighted above all the difficulty of in-

erpreting elevation cues. 

At the same time, the new mappings provide more meaningful cor-

espondences between physical and auditory cues. As a matter of fact,

eside the intuitive relationship between physical depth and bubble

epth, crossmodal correspondences between pitch (resonant frequency

n the bubble model) and elevation are well known in the literature

 Jamal et al., 2017 ) and frequently used in sensory substitution systems

including the vOICe). Furthermore, the boiling effect that gets more

nd more prominent while approaching an object can be interpreted as

n effective natural warning sound ( Ulfvengren, 2003 ). 

. Evaluation 

The main goal of the experiment presented here is to assess the per-

ormance and individual preference of the fluid flow sensory substitution

lgorithm in a blind wayfinding task. More in detail, the point-by-point

bjectives are 

1. to validate the effectiveness of the proposed sounds of giving reliable

and distinguishable information in a simplified wayfinding task with

a reasonably sized pool of naïve blindfolded participants; 

2. to collect individual judgments about the naturalness, pleasantness

and usability of the sounds that are conveyed; 

3. to compare the above results and ratings against those collected us-

ing the reference sensory substitution scheme provided through the

original vOICe algorithm ( Meijer, 1992 ). 

Our working hypotheses are that: (1) after a short training session,

he fluid flow algorithm is able to help participants avoid obstacles in the

arge majority of the presented cases; (2) performance and completion

ime are at least comparable to the vOICe algorithm; (3) the individual

udgments on the liquid sounds reflect a positive opinion on all the in-

estigated aspects and, in particular, a more positive rating compared

o the sounds produced by the vOICe algorithm. 

.1. Sample 

Fourteen participants (7F, 7M) participated on a voluntary basis.

ges ranged from 22 to 46 (M = 30 . 5 , SD = 7 . 2 ). All participants spoke

uent English and none of them reported either visual or hearing impair-

ents. All participants gave their informed consent for inclusion before

hey participated in the study. The study was conducted in accordance

ith the Declaration of Helsinki, and the protocol was approved by the

ational Bioethical Committee of Iceland (reference number VSN-15-

07). 

.2. Experimental setup 

The experiment took place in an empty classroom sized 8 m (length)

6 . 7 m (width) ×3 . 5 m (height) inside a building of the University

f Iceland. Four pieces of green carpet, sized 4 m × 0 . 5 m each, were

laced in the middle of the classroom floor in order to delimit a square

 . 5 m × 3 . 5 m testing area (see Fig. 2 a). During the whole experiment, to

ontrol for confounding effects, windows were kept closed and artificial

ight was turned on. The absence of any kind of activity in the neigh-

oring classrooms due to summer break guaranteed a quiet environment
12 
hroughout the testing sessions. The ventilation system of the classroom

roduced the only significant, yet constant, environmental sound. 

During the tests, white cardboard boxes were placed in predefined

ocations of the testing area. The size of a single cardboard box was 0 . 4 m
length) × 0 . 4 m (width) ×0 . 6 m (height). The number of boxes inside

he testing area during each experimental trial ranged from 5 to 8; when

ess than 8, the unused boxes were placed along one wall as shown in

ig. 2 a. Furthermore, a tripod holding a small Bluetooth box speaker (at

pproximately 1 . 2 m height) was placed along the end-side of the testing

rea. The only other significant objects present in the room were a desk

nd two chairs for the experimenters, all positioned behind the starting

oint of the participants. 

Participants wore the following equipment, pictured in Fig. 2 b: (a)

n elastic headband (originally holding a searchlight) with a Structure

ensor camera 2 , a high-performance structured light 3D sensor, tight-

ned to the frontal plastic hold; (b) a pair of open over-ear headphones

AKG K612 Pro); (c) a small backpack carrying a Lenovo Ideapad Y700

aptop running the software to which the camera, headphones and (d)

n external battery were connected; (e) a blindfold. In order to ensure

egular functioning, the laptop was constantly monitored by an exper-

menter through a second laptop placed on the desk behind the testing

rea, connected via VPN. Although bone conduction headphones would

e preferable in a real-world application in order not to obstruct regular

erception of environmental sounds ( Wilson et al., 2007 ), we decided in

avor of using open-ear headphones as they nicely allowed environmen-

al sound to enter the ear without any comfort or displacement issue. 

Depth maps with a resolution of 640 ×480 pixels were acquired from

he Structure Sensor at a rate of 10 frames per second with the support

f an open-source Matlab Wrapper for OpenNI 2.2, 3 processed in Mat-

ab, and sonified through the Pure Data software implementing the fluid

ow and vOICe algorithms. Depth maps spanned the entire field of view

f the Structure Sensor, i.e., 58° horizontal, 45° vertical, and a 0 . 4 m –3 m
epth range. Visual information falling beyond these ranges was there-

ore not sonified. 

.3. Stimuli 

The sound stimulus conveyed to participants during the experiment

as a continuous sonification of the depth data acquired through the

tructure Sensor, either through the fluid flow algorithm, referred to

s FF and described in Section 2 , or the vOICe algorithm, referred to

s VC and described in the following paragraph. Each algorithm was

mplemented as a Pure Data patch that constantly receives the depth

ap statistics data through the OSC (Open Sound Control) protocol. In

rder to avoid audible artifacts, the incoming depth map statistics values

ere smoothed with a 100-ms ramp function. In the experiment, the

 MAX parameter was set to 3 m and the number of voices of each liquid

ound generator to 32. For the sake of consistency, the level of the sound

ard was kept constant throughout the experiment for all participants. 

The vOICe sensory substitution algorithm was implemented follow-

ng the specifications from Meijer (1992) . The algorithm scans each

epth snapshot (resized to 64 ×64 pixels) from left to right, while as-

ociating height (i.e. the vertical coordinate of the pixel) with pitch

nd depth with loudness. More specifically, every row is associated to

n amplitude-controlled oscillator whose fixed frequency exponentially

anges from 500 Hz (bottom row) to 5 kHz (top row), while amplitude

s inversely proportionally related to the depth value, ranging from 0

or pixels of unknown depth value or where depth is greater than or

qual to d MAX , to 1 for pixels of zero depth. The auditory output of the

mplemented algorithm was compared against the original vOICe soft-

are for Windows on a small benchmark set of 10 depth maps from the

https://structure.io/
http://uk.mathworks.com/matlabcentral/fileexchange/42127-matlab-wrapper-for-openni-2-2
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Fig. 2. Experimental setup. ( a ) Subject during the experiment. ( b ) Close up of the equipment. 
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YU-Depth Dataset V2 4 ( Silberman et al., 2012 ), and it was found to

ever exceed 1 dB of spectral distortion in the 0 . 5 –5 kHz range. 

The generic HRTF filter that we used is provided through the

arplug ∼ Pure Data binaural synthesis external. The filter renders the

ngular position of the sound source relative to the subject by convolv-

ng the incoming signal with left and right HRTFs from the MIT KEMAR

atabase 5 ( Gardner and Martin, 1995 ). For the sake of consistency, the

ame HRTF filters were used for both FF and VC. 

.4. Experimental procedure 

The experiment was divided in two sessions, each corresponding to a

ingle sensory substitution algorithm (FF or VC). The two sessions were

onducted on different days and the order of the sensory substitution

lgorithms was randomized and balanced. A single experimental ses-

ion was composed of three parts presented in the following order: a

elf-training part, a guided training part, and an experimental test. The

urpose of the training was to allow for sufficient interaction with the

ystem and to gain experience with the sonification algorithm prior to

he experimental test, where the actual performance data was collected.

he duration of the self- and guided training was approximately 10 and

5 min, respectively, while the average duration of the experimental

est was approximately 40 min. 

.4.1. Self-training 

Basic information about the sensory substitution algorithm was first

rovided to participants through a short written description (7 lines) on

n experimental sheet, transcribed in the Appendix. Then, participants

ore the pair of headphones and freely interacted via keyboard with

 simplified demo of the system representing a single virtual object in

he field of view of the camera. Participants controlled the azimuth,

levation, distance, and size of the object (see key assignment below),

nd directly listened to the corresponding sonification: 

• numpads 1 –9 : change the direction of the object on a 3 ×3 grid: 3

azimuths (left, center, right) and 3 elevations (up, middle, down); 
• arrow keys up/down: increase/decrease the distance of the object

between 0 . 5 m and 3 m , in 0 . 5 m steps; 
• keys + / − : increase/decrease the size of the object (in terms of %

of the occupied area in that sector) from 0% to 100%, in 10% steps.

The self-training was designed to introduce participants to the sen-

ory substitution algorithm and the underlying mappings. 
4 http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html . 
5 http://sound.media.mit.edu/resources/KEMAR.html . 
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13 
.4.2. Guided training 

Participants were equipped with the system (backpack/PC, camera

eadband, blindfold, headphones) and then guided through five consec-

tive training steps as follows. 

Step A ( 3 min). Participants listened interactively to the sonification

f an empty testing area while being allowed to freely explore the empty

oom (only being stopped when going too close to an obstacle, e.g. the

esk or a wall). Additionally to the floor, at this stage, it was impor-

ant for participants to listen to and recognize the sonification of walls,

eiling and other fixed objects in the room. 

Step B ( 7 min). One object (made of two or three boxes on top of

ach other in turn) was placed in the middle of the testing area and par-

icipants were asked to interact with it. Participants were encouraged

guided if necessary) to systematically explore the sonification output

n relation to changing their own position, e.g. to (1) go towards/away

rom the object while facing it, therefore experiencing distance changes,

hile getting verbal feedback on the current distance; (2) circle the ob-

ect and stand aside of it while trying to locate it with only head move-

ents; (3) stand 2 m away, face the object and tilt the head up/down

n order to experience elevation changes. At this stage it was important

o let participants realize through training that objects closer than 0 . 4 m
r further than 3 m were not represented; therefore, participants were

nvited to explore and experience at what distance the sonification of

he object stopped. 

Step C ( 15 min). Participants trained scenes with a single object (made

f two or three boxes on top of each other) positioned in randomly cho-

en locations of the testing area within the represented distance range.

ink noise was played on the headphones in order to mask the sound

f boxes being moved when preparing the next scene. The participants ’

ask was to first point at the object after head movement only, tell its

pproximate distance (in meters) and size (2 or 3 boxes), and then to go

owards it and touch it. From this step onwards, after successful com-

letion of each scene, participants were invited to temporarily remove

he blindfold in order to check the scene they just accomplished. 

Step D ( 20 min). Participants trained scenes with two objects (each

ade of two or three boxes on top of each other) positioned in ran-

omly chosen locations of the testing area within the represented dis-

ance range, provided that they were positioned no less than 0 . 8 m apart

rom each other in order to be able to comfortably pass between them.

he participants ’ first task was to point at each object in turn after head

ovement only and tell again their approximate distance and size. After

uccessful completion of the first task, participants were asked to walk

etween and past the two objects trying not to touch or collide with

hem. 

Step E ( 20 min). Participants trained a number of scenes with two or

hree objects (randomized), aiming to find their way towards the small

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://sound.media.mit.edu/resources/KEMAR.html
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Fig. 3. The 10 testing scenes. The 2-box obstacles are depicted as gray squares, and the 3-box obstacles as black squares. The starting and target (end) points are 

marked with S and T, respectively. 
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peaker placed at a randomly chosen point on the opposite side of the

esting area and playing easy-listening pop music ( Llamas, 1996 ) at a

omfortable level. The obstacles (again 2 or 3 boxes on top of each other)

ere placed randomly within the testing area, provided that they were

ositioned no less than 0 . 8 m apart from each other (to all sides). Par-

icipants were asked to walk as carefully as possible trying not to touch

r collide with the obstacles, to stay inside the testing area all the time,

nd to scan the environment before moving forward. At this stage it

as important to tell participants that the tripod would be represented

hrough sound as well, that they should walk towards the target without

etour (especially when starting on the edges of the testing area), and

hat if close to the target, they should try to touch the target promptly. 

In order to reduce fatigue, a mandatory 10-min break was introduced

etween Step D and Step E. Participants were invited to take off the

ystem and relax. 

.4.3. Experimental test 

Right after the training, the blindfolded participants tested 10

ayfinding scenes with two or three objects always positioned within

he path towards the target, with a task similar to training step E. How-

ver, this time the obstacles (2 or 3 boxes on top of each other each) were

ot placed randomly within the testing area but in predefined locations,

s well as the starting and target (end) points, as shown in Fig. 3 . The

rder of the 10 scenes was randomized for each participant and each

ession. Participants were reminded to walk as carefully as possible, to

can the environment before moving forward, and to walk towards the

arget without detour. Participants were informed that their goal was to

each the target speaker trying to avoid any collision with obstacles and

ithout leaving the testing area, and that all errors would be counted.

or each experimental testing, collected data included: 

• number of collisions with obstacles, while differentiating between

minor collisions (i.e., not moving boxes from their position, for in-

stance brushing on them) and major collisions (i.e., boxes moved); 
• number of times the participant left the testing area by treading,

even partially, on the carpet (except when in the target ’s vicinity); 
• completion time (in seconds, taken with a timer), defined as the time

between the moment when the sonification was turned on and the

moment when the participant touched the speaker or tripod. 

After completion of all experimental testing scenes, participants were

sked to reply to a questionnaire about the corresponding sensory sub-

titution algorithm by ticking one item in each of three 7-point Likert

cales ( 1 = strongly disagree, 7 = strongly agree): 

1. I feel I could directly understand the meaning of the sounds without

training; 
14 
2. I feel that the sounds are pleasant; 

3. I would feel comfortable hearing these sounds on a daily basis. 

.5. Statistical analysis 

After an exploratory data analysis on all categories of navigation er-

ors, a more advanced analysis was performed. Due to the dependent,

ested structure of the data, and to factor in covariates, linear mixed

odels with fixed and random effects ( Pinheiro and Bates, 2000 ) were

t in R version 3.4.1 (R Development Core Team 2017). The within-

ubjects design of the current study allowed to statistically control for

he differences across participants in every analysis by taking individual

ariance as random effect into account, which might otherwise distort

he results. Additionally, training effects might influence the outcome,

eaning that participants accomplished more scenes without naviga-

ion errors when they went through the training and testing procedure

or the second time compared to the first time, independent of the sen-

ory substitution algorithm. By randomizing the sequence of the two

lgorithms, any systematical influence due to training effects was ex-

erimentally controlled for. Yet, the training effect might lead to sub-

tantial additional variance in the data, which is why it was statistically

ontrolled for by being factored in as random effect into all analyses. 

.5.1. Analysis of performance data 

In order to compare the performance between the two sensory sub-

titution algorithms, the probability of passing a scene (meaning the par-

icipants did neither collide with any obstacle nor leave the testing area)

or each of the two algorithms was calculated, set as outcome variable

nd fit in a Generalized Linear Mixed Model (GLMM). Due to the cate-

orical nature of the outcome variable, a mixed-effects binomial logis-

ic regression model was performed ( Hartzel et al., 2001; Hosmer et al.,

013 ) by executing the glmer() function as part of the lme4 package

n R ( Bates et al., 2015 ). For parameter estimation in the GLMM, in or-

er to approximate true likelihood, the Laplace approximation method

ith an adaptive algorithm using one integration point was performed

 Bolker et al., 2009 ). 

A model selection process was the first step of the performance anal-

sis, in which the improvement of model fits for three different models

as compared. Firstly, Model 0 (a baseline model not containing any

xed predictor but only the random effects of individuals and training)

as compared to Model 1 (with algorithm added as one fixed predictor)

n order to determine if taking in algorithm as predictor into the model

ignificantly improves the variance explained by the model. If so, al-

orithm would have a significant effect on the probability of passing a

cene. Secondly, Model 1 was compared to Model 2 (with time that was

ecessary for scene completion added as second fixed predictor, besides
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Table 1 

Individual experimental results: number of minor/major collisions ( C MIN / C MAJ ), 

number of times the participant left the testing area ( N OUT ) and total completion 

time ( T TOT ), divided by participant and sensory substitution algorithm. 

Participant ID C MIN C MAJ N OUT T TOT [s] 

FF VC FF VC FF VC FF VC 

01 2 1 0 1 0 0 771 702 

02 0 2 0 1 0 0 2451 1453 

03 0 6 0 1 0 0 1458 1840 

04 2 7 1 5 0 0 909 1292 

05 6 4 2 7 1 7 717 1648 

06 2 2 1 10 1 0 2172 1138 

07 8 8 1 6 2 1 1983 1202 

08 0 0 1 0 0 1 963 1506 

09 0 1 1 4 0 0 1466 1824 

10 0 0 1 0 0 0 230 228 

11 3 5 5 13 0 0 822 882 

12 0 0 0 0 0 0 407 344 

13 1 2 1 0 0 0 410 1021 

14 4 9 5 9 0 1 1880 1645 

Mean 2 3.4 1.4 4.1 0.3 0.7 1188.5 1194.6 

SD 2.5 3.1 1.6 4.4 0.6 1.9 713.4 513.4 
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lgorithm) in order to determine if adding time as predictor significantly

mproves the variance explained. If so, time would have a significant ef-

ect on the probability of passing a scene. A Chi-square distributed Like-

ihood Ratio Test was performed to determine if the difference between

odels was significant and therefore select the best model. Finally, the

odel with the best fit was reported with regression coefficients, ef-

ect direction, confidence intervals and the predictors significance was

scertained with the Wald statistics ( Wald, 1943 ). 

.5.2. Analysis of time data 

In the performance analysis described above, the time that partici-

ants needed to complete a scene was only indirectly taken into account

s possible predictor for passing as scene. However, we were mainly in-

erested in answering the question if the choice of sensory substitution

lgorithm results in significantly different times (while statistically con-

rolling for training and individual effects). To address this, a subset of

ata only including passed scenes was created and analyzed with time

s continuous outcome variable. This approach was chosen since the oc-

urrence of navigation errors hint at the possibility that scenes were not

epresented understandably and participants were not able to interpret

he obstacle location, which questions the sense of interpreting failed

cenes. 

A Linear Mixed Model with algorithm as fixed effect and individual

ifferences and training as random effects was fit using Restricted Maxi-

um Likelihood (REML) ( Pinheiro and Bates, 2000 ). We performed the

mer() function as part of the lme4 package to fit the LMM in R

 Bates et al., 2015 ), as well as the lmerTest package 6 to test if the

redictor of the proposed model was significant. The package provides

-test statistics by calculating the degrees of freedom with the Satterth-

aite approximation method ( Schaalje et al., 2002 ). 

.5.3. Analysis of questionnaire data 

We finally investigated for differences in individual questionnaire

cores between the two algorithms by running three separate Wilcoxon

igned-rank tests, one per questionnaire item (intuitiveness, pleasant-

ess and usability, respectively). The choice of the Wilcoxon signed-rank

est was due to the within-participants design and to the non-normal dis-

ribution of the questionnaire data. Before applying each test, we veri-

ed the assumption that the distribution of the differences between the

wo related groups was symmetrical in shape by checking that its skew

alue was between −2 and 2 ( Kim, 2013 ). 

. Results 

The complete individual results from the experiment are reported in

able 1 . In the table, variables C MIN (number of minor collisions), C MAJ 

number of major collisions), N OUT (number of times the participant left

he testing area), and T TOT (completion time) are aggregated for the 10

cenes. It can be noticed that a lower average number in all types of

avigation errors was registered for FF compared to VC. 

.1. Performance 

First, we compared the performance between the two algorithms,

F and VC. To assess whether a scene was reliably and understandably

epresented by the algorithm, the number of passed scenes was counted.

he results show that when using FF, 107 (out of 140) scenes were suc-

essfully completed by participants (therefore fulfilling our hypothesis

o.1), compared to 77 (out of 140) when the same participants used VC.

In order to assess whether the higher proportion of passed scenes

ith FF was statistically significant (on alpha level of .05), the influence

f the algorithm on the probability of passing a scene was determined

s described in Section 3.5.1 following a model selection process. The

esults for Model 1 and Model 2 are reported in Table 2 with regression
6 https://CRAN.R-project.org/package = lmerTest . 

 

e  
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15 
oefficients, standard errors, confidence intervals and Wald statistics per

redictor. Whereas all models included individual variance and training

s random effects, the basic model (Model 0) did not contain any fixed

redictors, which is why it is not presented in the table, but served as

aseline model for comparison to Model 1. 

According to the Likelihood Ratio Test (LRT), including the predic-

or of sensory substitution algorithm (Model 1) significantly improved

he model fit compared to an empty model without predictors (Model

), 𝜒2 (1) = 20 . 15 , p < .001. This result indicates that the choice of al-

orithm, FF or VC, has a significant effect on the outcome variable of

erformance, meaning that the probability that participants performed

 scene without errors was significantly higher when they followed FF

ompared to VC. 

In Model 2, time was included as additional fixed predictor to test

f it had a significant influence on the performance. We expected that

 short completion time, even though at first glance seemingly posi-

ive, might indicate that participants rushed through the scenes since

hey were lacking understanding of the scene resulting in collisions.

owever, including time as predictor (additionally to algorithm) does

ot significantly improve the model according to the LRT, 𝜒2 (1) = 2 . 50 ,
 = . 105 , meaning that the completion time is not a predictor for more

assed scenes. 

To summarize, Model 1, only including algorithm as fixed effect

hile factoring individual variance and training as random effects, ex-

lains most of variance in the data. Adding time as predictor does not

mprove the model fit. The Wald statistics for each fixed predictor of

odel 1, reported in Table 2 , confirm the significant effect of the sen-

ory substitution algorithm (improving our expectations as stated in hy-

othesis no.2) and the non-significant effect of time on the probability

f passing a scene. 

.2. Time 

As shown above, including time as fixed effect to predict if a scene

as passed does not significantly improve the model fit, thereby sug-

esting that if participants completed a scene either quickly or slowly

s not related to the fact that the scene was mastered without errors or

ot. 

The aim of the detailed time analysis was to investigate if the differ-

nt sensory substitution algorithms lead to significantly different com-

letion times. Thus, for the analysis, a subset of data only including

https://CRAN.R-project.org/package=lmerTest
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Table 2 

Results of calculating Generalized Linear Mixed Model for Model 1 and Model 2 including one additional predictor, 

each with individual variance and training as random effects. The model parameter estimates are calculated basing on 

Laplace approximation with 1 integration point. Shown are regression coefficients with associated standard errors (SE) 

and confidence intervals (CI), and Wald statistics ( z -value and p -value). 

Predictor Coeff. SE CI [LL,UL] z -value p -value 

Model 1 Algorithm − 1.30 0.33 [ − 1.94, − 0.66] − 3.96 p < .001 

Model 2 Algorithm − 1.30 0.33 [ − 1.95, − 0.65] − 3.94 p < .001 

Time − 0.01 0.01 [ − 0.02,0.00] − 1.64 𝑝 = . 101 

Fig. 4. Histograms of questionnaire scores. ( a ) Intuitiveness. ( b ) Pleasantness. ( c ) Usability. 
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assed scenes was created and fit in a LMM with time as continuous

utcome variable, algorithm as fixed and individuals and training as

andom effects, as described in Section 3.5.2 . The resulting parameter

s the regression coefficient for the fixed predictor of algorithm (on time

s outcome variable), 𝐵 = 4 . 98 [−1 . 91 , 11 . 87] with SE = 3 . 52 , indicating

hat the choice of algorithm does not influence the time needed for com-

leting the scenes ( 𝐹 (170 , 184) = 2 . 01 , 𝑝 = . 159 ). In conclusion, using FF

oes not cause participants to either complete a scene faster or slower,

ompared to VC. 

.3. Questionnaires 

The histograms in Fig. 4 report the scores given to each of the 3

uestionnaire items. The support in favour of the FF algorithm com-

ared to the VC algorithm was almost unanimous and reflected in all

cores, in line with our hypothesis no.3. Intuitiveness FF scores were

ignificantly higher ( 𝑍 = −2 . 81 , 𝑝 = . 005 ) than VC scores (medians: FF

 5 . 5 , VC = 3 . 5 ). Similarly, usability FF scores were significantly higher

 𝑍 = −2 . 96 , 𝑝 = . 003 ) than VC scores (medians: FF = 6 , VC = 4 ). More

nterestingly, an overwhelming difference was found in the pleasant-

ess scores (medians: FF = 6 , VC = 3 ), according to which participants

ighly significantly preferred FF to VC ( 𝑍 = −3 . 2 , 𝑝 = . 001 ). All the par-

icipants judged FF sounds pleasant, while 9 participants out of 14 neg-

tively judged the pleasantness of VC sounds. Only one participant gave

n equal rating to the two types of sounds, while all other participants

ave a higher score to FF sounds. 

. Discussion 

The fluid flow sensory substitution algorithm proved to be a usable

nd informative sensory substitution scheme for recognizing the loca-

ion of obstacles in a simplified blind wayfinding task. This conclusion

s supported by the experimental results on a pool of blindfolded sighted
16 
articipants, who managed to complete the task in 76% of the proposed

cenes. It has to be remarked that the majority of the scenes (see Fig. 3 )

equired the participants to travel through spaces as narrow as 80 cm

ithout even brushing against an obstacle. If we apply a minimum tol-

rance on the committed navigation errors and allow for one minor col-

ision per scene, which in the majority of cases meant that participants

ecognized the obstacle but did not keep enough distance while walking

ast it, the percentage of completed scenes grows to 86%. 

Remarkably, our experimental results indicate a statistically signifi-

ant superior performance of the fluid flow algorithm compared to the

OICe algorithm in terms of obstacle avoidance and navigation accu-

acy. This finding is supported by qualitative evaluations from the par-

icipants collected at the end of each session. For instance, a subset of

articipants remarked that they preferred to scan the environment them-

elves by rotating their heads rather than let the algorithm scan at a fixed

ate. This remark supports the use of real-time representation of the en-

ironment as provided by the fluid flow scheme rather than the vOICe,

hose inherently scanning nature combined with head motion results in

n unnatural “scan within a scan ” not easy to manage for some partici-

ants, at least following a short training session. Another subset of par-

icipants reported, following a collision with an obstacle, to have “lost ”

he obstacle vOICe representation while moving; this issue can also be

elated to the lack of a real-time feedback for effectively tracking obsta-

les not only during head movement but also during body movement.

ue to the high cognitive load on the working memory imposed by the

ouble-scanning with the vOICe algorithm, two participants reported

eadache after 2 h of training, which did not occur with the real-time

resentation used by the fluid flow algorithm. 

On the other hand, one participant deemed the vOICe algorithm to

e more convincing in delivering the spatial layout of the obstacles due

o the clear left-to-right scanning mechanism. The participant reported

hat he found the liquid sound representation of obstacles more difficult

o separate when there were two or more obstacles in the field of view of
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t  
he camera, and that he needed head and body movement to resolve the

cene layout. This remark may hint at the necessity of a more consistent

raining with the fluid flow algorithm in static conditions. 

As reported in the previous section, the time required to complete the

cenes was not significantly different between the two algorithms. Two

articipants scored exceptionally good performances, completing most

cenes without errors and in less than 30 s each, independently of the

ensory substitution algorithm. This results indicates a ceiling effect for

ertain participants, meaning that the scenes were too easy for them to

ccomplish and therefore they were not able to differentiate between the

wo algorithms. The ceiling effects covers potential differences between

he algorithms. Hence, even though the ceiling effect only occurred for

 out of 14 participants, it might be advisable for follow up studies to

ntroduce additional size categories with smaller obstacles, thereby in-

reasing the richness and complexity of scenes and modulating their

evel of difficulty. Some participants were on average both faster and

ore accurate with the fluid flow algorithm than with the vOICe, while

ther participants considerably slowed down when using the fluid flow

ounds. When asked about the latter behavior, one participant (at the

nd of her second session) stated that she had a much better under-

tanding of the scene with the fluid flow sounds and felt like she had

ore control about her performance than with the vOICe algorithm, and

herefore devoted more attention to complete the scene without errors.

his conduct is consistent with the fact that prior to the experimental

est participants were clearly informed that their task was to minimize

avigation errors and not race against time. 

The proposed algorithm directly receives as input reliable low-level

nformation conveyed through an off-the-shelf depth sensor, contrary

o other sensory substitution schemes previously explored by the au-

hors ( Bujacz et al., 2016; Csapó et al., 2017; Spagnol et al., 2016a;

016b ) that used obstacle information segmented through computation-

lly heavy image processing techniques. This is a very desirable prop-

rty in a system that needs to be scalable in order to run on smartphones

r embedded systems with low processing power, rather than the sys-

em used in our experiment, which does not meet real-world require-

ents. The scalability of the proposed approach is further supported

y the possibility of reducing the resolution of the depth map with-

ut considerable loss of information, as well as changing the size of

he oscillator bank for each liquid sound generator at the price of sound

uality ( Baldan et al., 2017 ). This would allow for graceful degradation

f our rendering approach depending on the available computational

esources. Future work will investigate the quality of experience and

sability of the sounds produced by the sensory substitution algorithm

ven in cases of limited computing power. 

One limitation of the current study lies in the use of a sensor with

imited field of view and range information, that disoriented some par-

icipants in that the obstacle sonification stopped when getting close

nough to it, and required considerable head rotation (both yaw and

itch) for a full scan of the scene. Furthermore, although not directly

nvestigated in this study, the choice of the spatialization technique has

n undeniable impact on the spatial perception of sounds, and therefore

n the degree of immersion ( Nilsson et al., 2016 ) and overall quality

f experience. The most effective solution would be the use of individ-

al HRTFs measured on the listener with the addition of head track-

ng and artificial reverberation ( Begault et al., 2001; Välimäki et al.,

012 ). However, obtaining acoustically measured individual HRTF data

s only possible with tailored equipment and invasive recording proce-

ures ( Cheng and Wakefield, 2001 ). On the other hand, even though

ne participant to our study commented that he could “clearly visual-

ze columns of bubbles ” where the obstacles were, using non-individual

RTFs is only effective for a limited number of individuals. Differ-

nt alternative approaches towards HRTF-based spatial rendering were

roposed throughout the last decades, ranging from HRTF selection

 Geronazzo et al., 2018; Seeber and Fastl, 2003 ) to filter models ( Brown

nd Duda, 1998; Spagnol et al., 2017b ) and numerical HRTF simulations

 Katz, 2001; Ziegelwanger et al., 2015 ). Such approaches are expected
17 
o progressively bridge the gap between accessibility and accuracy of

ndividual spatial audio ( Spagnol et al., 2018 ). Still, in cases of lim-

ted computing power, HRTF rendering can be substituted by constant-

ower panning ( Lee et al., 2004 ) to represent horizontal direction at

east. 

Validation with sighted users implies that these results should only

e generalized to the visually impaired population with caution. Blind

sers are generally more adapted to rely on their sense of hearing for ori-

ntation and solving daily mobility challenges compared to sighted, e.g.

y using echolocation techniques ( Schenkman and Nilsson, 2010 ). This

ight result in even lower training time required for VIPs to successfully

pply the fluid flow algorithm. Furthermore, dynamic postural stability

s affected by the visual system, which is why the postural stability of

ighted individuals with eyes closed has been shown to be superior to

hat of blind people ( Aydo ğ et al., 2006 ). This might result in more col-

isions when VIPs perform the same task compared to sighted people,

ven when the obstacle is correctly located in the first place. Addition-

lly, the method of scanning through head movements may not be as

atural for an early blind person as for a fully sighted person. Hence, to

ontrol for these possible differences between sighted and blind, similar

valuations of the fluid flow algorithm are being carried out by the au-

hors, ranging from virtual to complex real world environments ( Csapó

t al., 2017 ), required for assessing the usability of the system outside

he laboratory. In these evaluations, all visual aspects are removed from

he training sessions and replaced with verbal and tactile feedback. 

In the final questionnaire, participants reported a clear preference

or the fluid flow sounds compared to the vOICe sounds, in terms of

ntuitiveness, pleasantness, and usability. While it is possible that VIPs

ight place less of a premium on the pleasantness of sounds providing

hey are at least as usable, this result further supports integration of the

uid flow sounds in a sensory substitution system. Our belief, backed

y several participant comments in addition to the questionnaire scores,

s that a natural, intuitive, and aesthetically pleasant sonic representa-

ion requires little time and effort to be learned while at the same time

llowing for longer and less fatiguing practice sessions ( Singh et al.,

016 ). In a seminal paper from 2003, yet still as current today as ever,

occhesso et al. (2003) assert that “an aesthetic mismatch exists between

he rich, complex, and informative soundscapes in which mammals have

volved and the poor and annoying sounds of contemporary life in today ’s

nformation society ”, recognizing “the need for sounds that can convey in-

ormation about the environment yet be expressive and aesthetically interest-

ng. ” In our view, the use of physically based, natural-sounding liquid

ounds perfectly matches this need within the field of sensory substitu-

ion. 
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ppendix A. Experimental sheet descriptions 

FF. The system converts the video stream into a liquid streaming

ound produced through superposition of bubble sounds. Bubbles simul-

aneously come from the visible objects direction in space. The bigger

he volume occupied by an object in the visible space, the richer the

exture of the corresponding streaming sound (i.e., more bubbles pro-

uced). The higher the position of the object in the visible space, the

zzier the bubbles sound. The closer an object within the represented

istance range, the louder the liquid streaming sound. If the object gets

loser than 1 m , bubbles begin to present a characteristic boiling sound.

VC. The system converts the video stream into a sound made of the

uperposition of simple tones. The acquired image is scanned in a left

o right scanning order, at a rate of one scan per second. Hearing some
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ound on your left or right thus means having a corresponding object

attern on the left or right side, respectively. During every scan, the

igher the pitch, the higher the position of objects in that direction in

he visible space. Loudness means distance: the louder the sound, the

loser the objects in that direction in the visible space. The bigger the

olume occupied by an object in the visible space, the richer (i.e., more

imultaneous tones) and the longer the corresponding sound. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.ijhcs.2018.02.002 . 
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