
Designing Next-Gen Academic Curricula for
Game-Centric Procedural Audio and Music
Rob Hamilton1

1Stanford University, CCRMA, Stanford, CA, USA

Correspondence should be addressed to Rob Hamilton (rob@ccrma.stanford.edu)

ABSTRACT
The use of procedural technologies for the generation and control of real-time game music and audio systems
has in recent times become both more possible and prevalent. Increased industry exploration and adoption
of real-time audio engines like libPD coupled with the maturity of abstract audio languages such as FAUST
are driving new interactive musical possibilities. As such a distinct need is emerging for educators to codify
next-generation techniques and tools into coherent curricula in early support of future generations of sound
designers and composers. This paper details a multi-tiered set of technologies and workflows appropriate
for the introduction and exploration of beginner, intermediate and advanced procedural audio and music
techniques. Specific systems and workflows for rapid game-audio prototyping, real-time generative audio
and music systems, as well as performance optimization through low-level code generation will be discussed.

1. INTRODUCTION
Computer-based representations of space and action have
over the last five decades become both increasingly so-
phisticated and commonplace. The computer gaming
industry has bloomed into a multi-billion dollar busi-
ness, offering rich graphic content and dynamic control
interfaces on hardware platforms ranging from desktop
and laptop computer systems to home gaming-consoles
and mobile devices. The advent of ubiquitous fast net-
work connections and an explosion in modern society’s
use of social media have supported the rise of popular
massively multiplayer online environments - distributed
server-based virtual spaces capable of engaging large
numbers of clients at any given time. And while there
do exist large-scale music-based social gaming networks
and gaming franchises focused on interactive musical
gameplay [7], the majority of gaming titles still primar-
ily incorporate music as a background support for game
narrative and mood.

Even as graphics processing used in gaming systems
have become faster, more realistic and more sophisti-
cated with the increase in power available to most com-
puting devices, the allocation of cpu cycles to sound and
music concerns in most commercial gaming software
pipelines has remained relatively small by comparison.
One result of such limitation is that the vast majority of
sound assets used in software systems still consist of pre-

recorded samples, artfully combined by composers and
sound designers to create dynamic soundscapes and mu-
sical experiences.

As such, one concern for composers working with in-
teractive music systems for games and similar environ-
ments is the avoidance of undue repetition and the in-
tegration of thematic musical material with experiences
unfolding in the software. Techniques such as horizontal
arrangement and re-sequencing - where game data drives
the playback of subsequent thematic sections of a pre-
recorded composition - or vertical arrangement and or-
chestration - in which the density and orchestration of
musical material in the form of layered recorded materi-
als is driven by game data - allow composers to dynam-
ically adjust their composed materials in alignment with
game progress and narrative. And through the use of dy-
namic digital signal processing coloring both game audio
and music, a greater degree of interactivity coupled with
high-quality composed material can be achieved.

While such techniques allow sample-based sound
architectures to display a base level of dynamic change
and interactivity, true process-based or procedural audio
and music systems - wherein game parameters are
tightly coupled in real-time to synthesis and/or audio
manipulation processes - are still a significant exception
to the industry standard audio workflows.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
1



Hamilton Designing Game-Centric Academic Curricula for Procedural Audio and Music

While recent increases in gaming hardware mem-
ory and cpu speed have removed many of the oft
cited barriers prohibiting the use of procedural audio
systems in commercial gaming systems, one barrier that
still remains however is a distinct lack of educational
curricula for sound designers and composers looking
to expand their artistic and commercial practice into
procedural directions.

2. PROCEDURAL SOUND AND MUSIC

Data rich systems found in computer gaming or virtual
reality platforms, offer an opportunity to couple motion
and action in virtual spaces to sound and music gener-
ating processes. By creating music and sound in virtual
environments procedurally, that is by creating and con-
trolling sounds through the mapping of parameters of
motion, action or state to sound producing systems, the
sonic experience presented to users can be tightly inte-
grated with the visual and narrative experiences on which
successful cognitive immersion in game environments is
based. The same user control systems that control mo-
tion or action in space can control parameters of sound
and music. By coupling user action in direct as well as
abstracted fashion, rich artistic environments can be cre-
ated. In this way, the virtual environment itself as well as
a gamer’s interaction with that environment can become
both an active and reactive participant in the game’s sonic
experience.

2.1. Early Days of Procedural Sound

The use of procedural techniques linking game data di-
rectly to the generation of sound and music systems
in games and virtual environments is not new. In the
early days of computer gaming, before computer mem-
ory space was large enough to allow for the storage and
playback of large pre-recorded audio files and samples,
the majority of sound effects and game soundtracks were
commonly synthesized in real time using Programmable
Sound Generators (PSGs) driving simple synthesis pro-
cesses [2].

As gaming systems became larger and more complex,
the role of sound and music generation shifted signif-
icantly away from real-time data-driven synthesis and
control towards pre-recorded music and sound, more in
the style of a motion picture.

Andy Farnell described this paradigm shift in gam-
ing audio and music as such:

These computers seemed alive. There was
such low latency and response from the ma-
chine, and the sounds that they made were gen-
erated synthetically. There was a tight cou-
pling... it was like an instrument. I think sound
samples came along and sound became dead.
And it stayed dead for a long time. [4]

2.2. Recent Work

While many commercial video games embraced the
use of sound samples and more static soundtracks, the
growth of a more casual gaming practice - featuring less
complex game systems often based around portable de-
vices like the Nintendo DS gaming system or mobile de-
vices - often showcased innovative musical game sys-
tems. Designer Toshio Iwai created Electroplankton in
2005 with a dynamic musical system that was tightly
integrated into the game itself [10]. More recently, the
high-profile game Spore used Pure Data to drive proce-
dural music for its in-game character creator, mapping
user action to parameters influencing the musical score
in real-time [3].

With the introduction of projects such as libPD [1], a
wrapper for Pure Data [16] enabling its use as an embed-
ded audio engine, many of the difficulties limiting the use
of process-driven audio and music in commercial gaming
systems have decreased. Recent releases such as Frac-
tOSC1 and SimCell [15] feature dynamic real-time music
and audio systems driven by libPD. And with the massive
boom of mobile applications following the launch of the
Apple and Google application stores, an ever increasing
number of music-based applications like Smule’s Oca-
rina [21] and Leaf Trombone [20] - each powered by an
embedded version of the ChucK audio programming lan-
guage [19] - are leveraging procedural techniques as a
core gameplay component.

3. EXISTING GAME AUDIO CURRICULAR
DEVELOPMENT

To date there have existed significant academic and in-
dustry efforts to provide direction in the development and
standardization of game-specific audio and music curric-
ula. Perhaps most notably, in the 2011 ”Game Audio

1http://fractgame.com

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 2 of 8



Hamilton Designing Game-Centric Academic Curricula for Procedural Audio and Music

Curriculum Guideline” [9] prepared by the Education
Working Group of the Interactive Audio Special Inter-
est Group, a detailed four-year academic curriculum is
proposed, stressing necessary skills for students to suc-
cessfully enter the game audio workforce. Skills ranging
from Sound Design, Dialog, Mixing and Composition to
Interactive Audio Aesthetics and Game Music Analysis
are suggested, providing a well-rounded curriculum to
support industry’s expectation for existing projects.

However, not only are discussions about procedural mu-
sic and audio systems not prominent in the proposed
guidelines, the role of Audio Programmer is considered
separate from the specializations of Sound Design and
Music, with the guidelines going as far to suggest:

...an Audio Programmer should - while
having experience in audio - obtain an under-
graduate degree in Computer Science first and
foremost.

As technology continues to evolve at an extremely rapid
pace, the use of what were once considered ”advanced”
techniques in this field are rapidly becoming tools that
students routinely incorporate into their own sonic prac-
tices, expanding the ”Jack of All Trades” mentality be-
yond simple audio and music creation and editing to in-
corporate software development and design. Today’s stu-
dents who have grown up surrounded by powerful com-
puting devices are entering University settings exhibiting
a comfort level with technology that simply did not ex-
ist in previous generations. For such students, the com-
bination of artistic and technological pursuits is nothing
revolutionary, just an inevitable consequence of the role
technology plays in their lives.

4. THE RISE AND ROLE OF THE
COMPOSER/PROGRAMMER

Rather than view musical composition and computer pro-
gramming as two distinct skill sets, success in procedu-
ral music and audio concerns somewhat mandates stu-
dents to possess skills from both these domains. To suc-
cessfully understand, design and implement procedural
sound and music systems, students must be able to con-
ceptualize music as a non-linear system of sorts, leverag-
ing the power of dynamic software systems to augment
traditional linear audio and music workflows. Towards
these goals, it becomes imperative that students of au-
dio and music are exposed to a wide array of interactive

music and audio systems and methodologies beyond the
influence of static audio-visual media such as cinema.

One place in academia where the role of com-
poser/programmer has been fostered and promoted
throughout its nearly 50-year history can be found within
the field of Computer Music. From Max Mathews
and John Pierce’s early experiments with computer-
generated sound and music at Bell Labs [11], working
with composers such as Jean-Claude Risset and John
Chowning, there was a deep-rooted understanding that
both computational and musical systems of thought were
integral in order to truly understand the sonic possibil-
ities afforded by computers. Modern computer music
programs can be found within countless Music Depart-
ments at Universities around the world and routinely
teach the integration of composition and sound design
with interactive visual systems.

5. A MULTI-TIERED PROCEDURAL
CURRICULUM

The design and development of procedural audio sys-
tems are by nature complex. For sound designers and
composers, accustomed to working with audio and mu-
sic tools within relatively straightforward asset creation
production workflows, the dynamic and volatile nature of
procedural systems can present an overwhelming chal-
lenge. The tight coupling between game and audio en-
gines necessary to procedurally bind action to audible
event requires practitioners at some level to be capable
software designers and audio engineers, in addition to
traditional sound design and music composition skill-
sets. And while industry development teams can allocate
specialists to each of these roles, students or individuals
working outside of a fully-funded professional environ-
ment will likely need to bootstrap their own projects, si-
multaneously playing multiple roles across multiple spe-
cialties.

When introducing procedural audio systems and their in-
tegration into game engines as part of an academic cur-
riculum, a multi-tiered approach in which the need for
students to engage game-engine code is introduced grad-
ually can offer students the experience of composing and
designing for dynamic systems before necessitating any
hands-on programming skills. Within the context of a
Computer Music or Interactive Media program, such a
combination of software-based musical and visual media
is already becoming relatively common.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 3 of 8



Hamilton Designing Game-Centric Academic Curricula for Procedural Audio and Music

For the purposes of this paper a three-tiered approach is
defined, made up of the following tiers:

• Rapid prototyping with Open Sound Control
(Beginner)

• Embedded audio systems with libPD (Intermediate)

• Generating low-level audio code (Advanced)

The amount of student interaction with actual game-
engine code can itself be presented in a multi-tiered
fashion, introducing procedural systems with no game-
engine coding first, and gradually increasing student ex-
posure to game coding paradigms. This technique and
the tools described below were explored during Stan-
ford University courses such as Compositional Algo-
rithms, Psychoacoustics, and Spatial Processing and
Computer Music Improvisation and Algorithmic Perfor-
mance (2013), as well as during the 2014 Designing Mu-
sical Games::Gaming Musical Design CCRMA Sum-
mer workshop, an intensive weeklong seminar in design-
ing and building procedural game environments held at
Stanford’s Center for Computer Research in Music and
Acoustics2.

6. TIER 1: RAPID PROTOTYPING WITH OPEN-
SOUND CONTROL

One technique for quickly prototyping procedural game
audio interactions makes use of the Open Sound Con-
trol (OSC) protocol [22] to pass game-state parameters
in real-time to powerful interactive audio systems writ-
ten in computer-music programming languages such as
Supercollider, ChucK, Max/MSP or Pure Data. By com-
piling OSC libraries into a game’s codebase and hooking
individual engine events, control systems or game-state
data, a game’s parameter stream can be mapped to con-
trol complex audio systems. Students are still required
to build sound engines in these higher-level audio pro-
gramming languages, however as these languages were
designed to be used primarily by musicians, the learning
curve and overall complexity is significantly lower than
programming similar systems in low-level languages.

Using OSC and a music-based programming environ-
ment, student composers and sound designers can fo-
cus their energy on crafting musical systems and inter-
actions, and not on the integration of low-level audio

2https://ccrma.stanford.edu/workshops/designingmusicalgames2014

code. To facilitate this rapid-prototyping approach, a se-
ries of Open-Sound Control enabled game environments
have been developed, allowing students to explore famil-
iar game environments such as Minecraft, and Quake III,
with more flexible implementations designed to integrate
with the Unreal and Unity game development platforms.

6.1. Osccraft

Released in the Summer of 2014, Osccraft is a modifica-
tion to the popular game Minecraft that embeds oscP5, a
bi-directional Java OSC library, into the Minecraft Forge
mod framework. Osccraft outputs real-time OSC mes-
sages passing parameters of player motion (3D transla-
tion and rotation), block events (creation, destruction and
hit interactions), as well as tracking AI-controlled mobs
and World events such as time (across a day-night cy-
cle). Osccraft can also be run with multiple networked
clients, allowing for the creation of complex multiuser
interaction schemata.

As the core game-mechanic of Minecraft is the creation
and manipulation of blocks, users can rapidly build and
modify game environments on the fly with no additional
code or software use other than the game itself. As part
of a procedural sound and music curriculum, students
can use Osccraft to build and interact with game topogra-
phies, structures and entities on-the-fly, testing sound
treatments and processing techniques via OSC without
exiting the game environment.

The Osccraft mod code is freely available and open-
sourced both as a re-obfuscated and compiled .jar file and
as source code. The project repository can be found on
github at https://github.com/robertkhamilton/osccraft

6.2. q3osc

q3osc [8] is a heavily modified version of the open-
sourced ioquake3 gaming engine featuring an imple-
mentation of Open Sound Control for bi-directional
communication between a game server and one or more
external audio servers. By combining ioquake3’s inter-
nal physics engine and robust multiplayer network code
with a full-featured OSC packet manipulation library,
the virtual actions and motions of game clients and
previously one-dimensional in-game weapon projectiles
can be repurposed as independent and behavior-driven
OSC emitting sound-objects for real-time networked
performance and spatialization within a multi-channel
audio environment.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 4 of 8



Hamilton Designing Game-Centric Academic Curricula for Procedural Audio and Music

Fig. 2: A multi-player chromatic marimba built within Osccraft for the 2014 ”Designing Musical Games::Gaming
Musical Design” Workshop at Stanford University’s CCRMA.

6.3. Unity3D

For students with some background in software develop-
ment or game art and animation, a more hands-on ap-
proach can be pursued in which game scripts and art as-
sets can be manipulated at a high level. The Unity3D
game programming environment can be easily extended
to embed OSC libraries using a variety of programming
languages, including Javascript, C# or Boo. A number
of fully-featured OSC libraries with Unity-specific wrap-
per classes are freely available including OSCSharp3 and
UnityOSC4.

To introduce programming concepts without overwhelm-
ing relatively inexperienced students, a simple 2D
sidescroller game environment can be easily designed
in Unity with key game interactions hooked to OSC-
generating events. For the Designing Musical Games
workshop, a simple game titled ”World of Mush” was
prototyped and distributed to students, with basic OSC
hooks for player position and trigger zones including
mushroom-shaped jump-pads already included. Students

3https://github.com/valyard/OSCsharp
4https://github.com/jorgegarcia/UnityOSC

were encouraged to add new OSC hooks by reproduc-
ing simple code elements included in the project, explor-
ing new creative game interactions and building dynamic
sound processes using the Pure Data programming envi-
ronment.

6.4. UDKOSC
For students more comfortable with software develop-
ment and programming, full 3D game engines such as
the Unreal Development Kit (UDK) [17] or the more re-
cently released Unreal Engine 4 provide next-gen graph-
ics capabilities and robust game architectures. Intro-
duced in 2011, UDKOSC is a modification to the UDK
featuring OSC input and output streams for the control-
ling, tracking and sonification of in-game actions and
motions [6]. UDKOSC was designed to support the cre-
ation of immersive mixed-reality musical performance
spaces as well as to serve as a rapid prototyping work-
flow tool for procedural/adaptive game audio profession-
als [14, 18]. Data points tracked in UDKOSC include ac-
tor, projectile and static mesh coordinate positions, game
events such as collision, and real-time ray tracing from
player actors to identify interaction with specific object
types and classes.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 5 of 8



Hamilton Designing Game-Centric Academic Curricula for Procedural Audio and Music

Fig. 2: Parameters of avatar skeletal-mesh bone translation and rotation for a bird-like avatar are tracked with UDKOSC
in the mixed-reality musical performance work ECHO::Canyon

UDKOSC is a set of UDK custom class files, which
when compiled, take the form of a custom game-type
within the UDK. Gestures, motions and actions gener-
ated by actors in game-space are hooked and output as
OSC messages to be transformed in real-time into con-
trol messages for complex audio and musical software
systems. While the UDK restricts access to Unreal’s core
C++ codebase, it exposes UnrealScript as a higher-level
scripting language. UnrealScript allows developers to
bind Windows Win32 .dll’s to UnrealScript classes, en-
abling external blocks of code to interact with the script-
ing layer. Using this DllBind functionality, UDKOSC
binds a customized version of Oscpack to a series of Un-
realScript classes and mirrored data structures, passing
bidirectional data both into and out from the game en-
gine. Real-time game data can be streamed over UDP to
any given IP-address and port combination and control
messages from external processes can be streamed into
the game engine.

OSC input can be used to drive actor velocity and rota-
tion in three-dimensions, and can be targeted towards nu-
merous entities individually or simultaneously through
the use of OSC bundles. Input data for the control of
game pawn, player or camera actors is designed to offer
detail and flexibility in the manner in which actors are
moved and controlled within the game engine. In this
way, detailed choreographed positioning and action can
be carried out, such as the flocking actions of flying ac-
tors or intricate camera motion and cut scenes.

The UDK is available at no cost for educational and

non-commercial use and until early 2014 was updated
monthly with new features ranging from enhancements
to the lighting and modeling tools to integration with Ap-
ple’s iOS, allowing works created in the UDK to be pub-
lished to mobile devices such as the iPhone and iPad.

7. TIER 2: EMBEDDED PROCEDURAL AUDIO
ENGINES

While the use of Open Sound Control alongside exter-
nal interactive music programming languages allows stu-
dents to quickly experiment with game parameter map-
pings and novel compositional and sound design tech-
niques, this approach becomes problematic when the
goal of a given game audio project is the release of a
commercially ”shippable” game product. To build game
audio and music systems that can be released as com-
mercial game products to end users, the audio generating
codebase needs to be compiled into one distinct project.
However rather than leap from flexible computer-music
style programming languages directly into sound and
music systems based around low-level audio program-
ming, there exists a middle-ground wherein a fully fea-
tured dynamic audio programming language can be em-
bedded within a host application, communicating with
the game engine using hooks similar to the Open Sound
Control implementations explored in our first tier ap-
proaches. While the use of languages like ChucK has
been successfully explored within mobile musical gam-
ing applications, at this time, Pure Data and the libPD
project offer perhaps the most mature and stable engine
of this type.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 6 of 8



Hamilton Designing Game-Centric Academic Curricula for Procedural Audio and Music

7.1. libPD

libPD is an embeddable library that wraps Miller Puck-
ette’s Pure Data audio programming language and al-
lows it to be compiled into interactive media-rich envi-
ronments. The libPD project has been ported to a num-
ber of platforms including iOS and Android and allows
sound designers and composers to build dynamic sound
projects using Pure Data’s graphical patching paradigms.
The Pure Data user and developer community are both
large and robust, making the Pure Data language a strong
choice for students looking to learn more about interac-
tive music systems.

Binding libPD into a Unity3D or iOS project is relatively
straightforward and painless thanks to the project’s pre-
defined wrapper classes for CSharp and iOS. During the
Designing Musical Games CCRMA workshop, partici-
pants with no prior libPD or Unity experience were able
to build a Unity Scene with libPD hooks into player mo-
tion and rotation attributes, compile that project for iOS
and subsequently push the Unity project with an embed-
ded libPD engine onto an iOS device.

8. TIER 3: PROCESS OPTIMIZATION AND
LOW-LEVEL CODE GENERATION

One major concern when working with dynamic audio
environments like PD in commercial projects is the dy-
namic nature of the system itself and the potential for
performance issues. The same inherent flexibility that
makes PD a great choice for prototyping and develop-
ment makes it less optimal for projects with fixed non-
changing audio demands. For advanced students build-
ing fast and stable audio and music projects, the need
to use highly optimized code with small memory and
cpu footprints may likely lead them away from a project
like libPD and towards functional specification and code
generation workflows using projects such as FAUST and
HEAVY.

8.1. FAUST

FAUST, or Functional Audio Streaming, is a functional
specification language developed at GRAME that allows
sound designers to define synthesis and signal processors
at a high level, prototype and test those processes as com-
piled objects for dynamic audio programming languages
like PD and Supercollider, and then subsequently com-
pile them down to highly optimized C++ code for use di-
rectly in a game-engine [5]. FAUST features both a desk-
top based development environment as well as an online

FAUST compiler, capable of rendering FAUST objects
in a variety of library and plugin forms [12].

8.2. HEAVY

Another option to generate efficient and optimized com-
piled code objects from a higher-level language speci-
fication can be found in Martin Roth and Joe White’s
HEAVY project5 (formerly known as Tannhäuser PD)6.
HEAVY analyzes Pure Data patches and generates effi-
cient compiled software objects or C++ code. HEAVY
sprang out of Roth’s previous work at RJDJ, a mobile
music application company that used highly optimized
versions of Pure Data and libPD in their shipping musi-
cal products. At the time of this writing, HEAVY is still
in a closed Beta state.

9. CONCLUSIONS

There exists a growing need in commercial game devel-
opment for flexible and dynamic audio systems to com-
plement the highly procedural and generative visual as-
pects of modern gameplay. As demand grows for sound
designers and composers comfortable working in dy-
namic and procedural sound and music paradigms, so too
will demand grow for educational curricula designed to
introduce and refine the techniques and workflows neces-
sary to build these intricate and subtle systems. This pa-
per has presented a multi-tiered approach for the teaching
of procedural sound and music systems. By presenting
students with a series of gaming platforms and dynamic
sound and music generation techniques at different steps
along their educational path, students can quickly begin
experimenting with the artistic and creative aspects of
building procedural sound systems without being intim-
idated or slowed down by the intricacies of software de-
velopment. And as their skill set and comfort level with
procedural and programming systems grows, the projects
and workflows outlined in this paper can provide a steady
stream of challenges and attainable goals.

10. REFERENCES

[1] Brinkmann, P. and McCormick, C. and Kirn, P.
and Roth, M. and Lawler, R. and Steiner, H.-C.,
Embedding pure data with libpd, Proceedings of
the Fourth International Pure Data Convention, pp.
291–301, June, 2011.

5http://heavy.enzienaudio.com/
6http://tannhauserpd.section6.ch

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 7 of 8



Hamilton Designing Game-Centric Academic Curricula for Procedural Audio and Music

[2] Collins, K., FromBitstoHits:Video Games Music
Changes its Tune, Film International, vol. 12, pp.
4–19, January, 2012.

[3] Danks, M., PD in video game Spore; fo-
rum communication, http://lists.puredata.info/
pipermail/pd-list/2007-11/056307.html

[4] Farnell, A., Keynote Lecture, Satellite Workshop at
the 14th International Conference on Digital Audio
Effects (DAFx), Paris, France, DAFx/Ircam, Paris,
France, 2011, http://vimeo.com/35254559.

[5] Y. Orlarey, D. Fober, and S. Letz, An algebra for
block diagram languages, in Proceedings of In-
ternational Computer Music Conference, pp. 542–
547, 2002.

[6] Hamilton, R., UDKOSC: An immersive musical
environment, in Proceedings of the International
Computer Music Conference, Huddersfield, UK,
pp. 717–720, August, 2011.

[7] Hamilton, R. and Smith, J. and Wang, G., Social
Composition: Musical Data Systems for Expres-
sive Mobile Music, Leonardo Music Journal, vol-
ume 21, 2011.

[8] Hamilton, R., q3osc: or How I Learned to Stop
Worrying and Love the Game, In Proceedings
of the International Computer Music Association
Conference, Belfast, Ireland, 2008.

[9] Education Working Group of the Interactive Audio
Special Interest Group, Game Audio Curriculum
Guideline v.10, Interactive Audio Special Interest
Group (IASIG), March 2011.

[10] Iwai, T., Electroplankton User Manual, Nintendo of
America, Inc., 2005.

[11] Mathews, M. V., The Digital Computer as a Musi-
cal Instrument. Science, New Series, Vol. 142, No.
3592 (Nov. 1, 1963), pp. 553-557.

[12] R. Michon, Y. Orlarey, The Faust Online Compiler:
a Web-Based IDE for the Faust Programming Lan-
guage.

[13] Onen, U. and Stevens, R. and Collins, K., De-
signing an International Curriculum Guideline for
Game Audio: Problems and Solutions, Journal of
Game Design, Development and Education, pp. 38
– 47, 2011.

[14] Paul, L. J., Video Game Audio Prototyping with
Half-Life 2, in Transdisciplinary Digital Art,
Sound, Vision and the New Screen, Adams, R. and
Gibson, S. and Arisona, S. editors, Communica-
tions in Computer and Information Science, vol. 7,
pp. 187–198, Springer Berlin Heidelberg, 2008.

[15] Paul, L. J., The Procedural Sound Design of Sim
Cell, presented at the AES 137th convention, AES
2014, Los Angeles, CA, 2014.

[16] Puckette, M., Pure Data, in Proceedings, Interna-
tional Computer Music Conference, San Francisco,
pp. 269–272, 1996.

[17] Epic Games, Unreal Development Kit (UDK),
https://www.unrealengine.com/products/udk

[18] Verron, C. and Drettakis, G., Procedural audio
modeling for particle-based environmental effects,
in Proceedings of the 133rd AES Convention, Au-
dio Engineering Society, San Francisco, 2012.

[19] Wang, G. The ChucK Audio Programming Lan-
guage: A Strongly-timed and On-the-fly Envi-
ron/mentality. PhD Thesis, Princeton University,
2008.

[20] Wang, G. and Oh, J. and Salazar, S. and Hamilton,
R., World Stage: A Crowdsourcing Paradigm for
Social / Mobile Music, In Proceedings of the In-
ternational Computer Music Conference.. Hudder-
sfield, UK, 2011.

[21] Wang, G., Ocarina: Designing the iPhone’s Magic
Flute, Computer Music Journal. 38(2):8-21, 2014.

[22] Wright, M., Open Sound Control: an enabling tech-
nology for musical networking, Organised Sound,
vol. 10, pp. 193–200, 2005.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 8 of 8


