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Abstract

This paper describes a software system using bioinformatic

data recorded from a performer in real-time as a

probabilistic driver for the composition and subsequent

real-time generation of traditionally notated musical scores.

To facilitate the generation and presentation of musical

scores to a performer, the system makes use of a custom

LilyPond output parser, a set of Java classes running within

Cycling ‘74’s MAX environment for data analysis and score

generation, and an Atmel AT-Mega16 micro-processor

capable of converting analog bioinformatic sensor data into

Open Sound Control (OSC) messages.

1 Introduction

The mapping of fluctuations of a performer’s

physiological state during the performance of a piece of

music to specific compositional parameters can be used to

form an intimate relationship between a performer and the

structure of a piece of music. Human physiological

responses, voluntarily or involuntarily generated and

measured with bioinformatic sensors, can be mapped in

software to various compositional parameters. With the use

of a real-time score generating and display system,

physiological response re-interpreted as notated musical

gesture can be displayed to the performer for realization.

The mapping of predominately involuntary performer

excitation levels to pre-composed musical events creates a

hybrid improvisational and compositional form allowing

both the composer and performer to have input into the final

compositional structure.

Rather than use voluntarily generated physiological

signals as active controls on the musical output, this system

seeks instead to modify compositional content to react to

involuntary physiological reaction. In this model, autonomic

physiological data acts as a control signal while a

performer’s physical gesture retains its traditional role as an

expressive component of performance. In essence, the

compositional decisions made by the composer act as a

deterministic filter for the autonomic control signals

generated by the performer.

By varying the relationship between physiological

reaction and resultant compositional output, different

compositional forms can be created. For instance, when an

inverse response mapping is applied, where strong sensor

readings generate weak or relatively simple compositional

structures, a performer’s physiological state can potentially

be coerced into a less excited state. Similarly, a performer in

a stable or less excited state will be presented with more

active musical cells, aiming to excite the performer into a

more active state. When a direct mapping between

physiological state and compositional form is applied,

musical output mirrors physiological state, outputting

musical cells that reinforce the current state. Additionally,

more complex mapping relationships can be defined and

implemented with relative ease.

2 Related work
While there exist numerous projects designed to

generate musical construct from bioinformatic response, the

majority seem to focus on not only conscious or active

control by performers/subjects but also on the application of

relatively direct mappings of bio-data to musical form. In

this approach, control systems allow performers to use

voluntary physiological gesture as a direct controller for

musical gesture, turning the body into a sophisticated

musical control interface (Knapp and Cook 2005; Knapp

and Lusted 1990). Even when systems incorporate

physiological biofeedback signals, many do so to create

direct and controllable mappings between performer and

performance.

Work by Dr. Geoffrey Wright and NeuroSonics on Brain

Generated Music (BGM) addresses the use of EEG data as a

musical driver to create more abstract representations of

physiological data (Kurzweil 1999). Indeed, such an

approach makes use of a confluence of voluntary and

involuntary bioinformatic data, as well as the generation of

bioinformatic feedback during a “performance”, as subjects

listen to music generated by their brain waves in real-time.

In the paradigm of real-time score generation and

presentation systems, Kevin Baird’s No Clergy project

addresses many of the same generation and display issues

faced here using a network server and web-browser for

score display and a Ruby/Python backend (Baird 2005).

Development of the Java probabilistic composition

classes used in this project began with the jChing

compositional system (Hamilton 2005), designed to model

John Cage’s chance-based I-Ching compositional

techniques (Pritchett 1996).



3 System Design

To provide for the collection and processing of incoming

data streams as well as for the output of notated musical

data, the integration of a number of existing software and

hardware platforms was necessary. By standardizing data

formats and making use of OSC for data transmission

(Wright and Freed 1997), existing open-source software

such as LilyPond (Nienhuys and Nieuwenhuizen 2003) Pure

Data or PD (Puckette 1996), and GhostView (Thiesen)

could be utilized alongside custom Java classes and patches

within commercial software such as Max/MSP for data

processing, analysis and display.

The basic counter-clockwise workflow of hardware and

software data-exchange can be viewed in Figure 1. It should

be noted that while the current sensor hardware tracks

galvanic skin response, the use of software-based data

normalization and the manner in which variance in

physiological data is calculated with reference to a

performer-specific “baseline” output level makes the

implementation of additional sensors relatively simple.

3.1 Galvanic Skin Response (GSR)

For the purpose of system proof-of-concept and initial

testing, a simple galvanic skin response (GSR) circuit was

used to measure variance in skin conductivity during a

musical performance. Galvanic skin response can be

described as a measured fluctuation in the electrical

resistance of the skin. Using a pair of electrodes usually

connected to adjacent fingers, a small electrical current is

passed through a subject’s skin via one electrode and

subsequently measured by another. By measuring changes

in skin conductivity relative to applied stimuli, it has been

proposed that not only can a subject’s emotional or

attentional reaction be measured but that the GSR can be

considered relatively autonomic and not easily controlled by

the subject (Greenfield and Steinback 1972). While a

number of pre-recorded data streams of varying

physiological data sources have been tested with the system

(EKG, EEG), the relative simplicity of implementation of

the GSR circuit in a real-time environment led to its use in

initial testing and performance situations.

Figure 1. Hardware/Software System Workflow



3.2 Hardware

Performer GSR levels are monitored with the use of an

analog GSR circuit connected to an ATMEL AT-MEGA16

microprocessor. The microprocessor, running custom C-

code, formats the ADC converted voltage values for output

using the OSC data protocol. The GSR circuit used in the

initial testing and development of the system was designed

and built by Jay Kadis of Stanford University’s CCRMA

(see Figure 2).

While a standard methodology for the measurement of

GSR data calls for the attaching of conductive sensors to the

fingers of a subject (to take advantage of the greater amount

of resistance fluctuation in finger tissue), as musical

instruments tend to be performed using the fingers and

hands, to reduce data artifacts due to physical displacement

of finger mounted GSR sensors during performance, a pair

of sensors were instead attached to the performer’s toes.

Non-performance tests of GSR fluctuations comparing toe

and finger placements showed similar results for either

location.

 

Figure 2. GSR circuit box with finger/toe sensors

and Atmel microprocessor

3.3 Software workflow

OSC formatting and routing objects1 running in a PD

patch on a computer with a serial connection to the

microprocessor receive a steady stream of voltage values

converted by the microprocessor’s ADC. The PD patch

simply forwards these unprocessed converted voltage values

over a local OSC connection to a Max/MSP patch for

normalization, data processing and analysis.

The core of the system lies in a set of Java classes

designed to take pre-composed musical cells as input, define

probabilistic relationships between each cell’s pitch

“activity” (defined as an aggregate of semitone pitch-steps

throughout the cell) and to output musical cells in the

LilyPond (.ly) data format. These Java classes are

instantiated within the Max/MSP environment, allowing for

real-time interaction between the data streams and the

classes, as well as a fully-featured system GUI for real-time

control and data representation (see Figure 3), without a

prohibitive development timeframe.

                                                            
1
 OSC, OSCroute, and dumpOSCSerial objects by Matt Wright et al.

Figure 3. Max/MSP GUI

By leveraging Max/MSP’s ability to interact with the

BSD Unix shell of an Apple computer running OS X (using

the “shell” object), programmatic shell calls are made to

both LilyPond (for postscript score compilation) and to SCP

for data-transport from the processing machine to a locally-

networked display terminal running a postscript viewing

application such as kGhostView. This modular approach for

processing and data display creates an extremely flexible

workflow which can be adapted to run on a number of

system platforms and software applications.

4 Data processing

Signal levels taken from the GSR sensors are recorded

into sample buffers, creating a windowed data set

representing a fluctuation of input signal over a given time

frame. Both the frequency of sampling and the number of

samples comprising a window are configurable using the

Max/MSP GUI. Each windowed data set is first compared

against a baseline data set – taken before the start of the

performance with the performer in a relatively stable

physiological state – and subsequently used to generate a

single scaled “activity” value, representing the variation in

amplitude of each input sample in relation to the amplitude

of its previously recorded sample.

After establishing baseline values for input data, it is

useful to establish relative maximum and minimum data

values for computation. The subsequent range of possible or

probable data values can be subsected into any number of

“activity zones” by setting a “zone” value in the GUI. This

effectively creates n-number of equally-sized ranges of

activity for both the musical Gamut Squares as well as for

the input GSR data sets. In this manner, increases or

decreases in precision can be set to account for more or less

active data streams.



4.1 Musical Activity

Pre-composed musical data cells comprised of musical

note and articulation data called “Gamut Squares” are

loaded into memory and used to create a detailed

hierarchical musical data structure in Java (Hamilton 2005).

In a manner similar to the aforementioned signal “activity”

metric, the intervallic distance between adjacent notes in a

given Gamut Square is used to calculate a melodic or

interval-based activity cell value (see Figure 4).

Figure 4. Melodic Activity as adjacent semitone distance

By tracking pitch change from note to note across the

duration of a given musical phrase, we can calculate an

activity value for the melodic content of each excerpt. The

simplest method for calculating melodic activity ignores

harmonic roles of notes – each note’s position within a

classically defined harmonic structure – and instead

concentrates on the vertical pitch motion from note to note.

(in this context a note is defined as an independent note

onset and offset).

Given Figure 4, if the distance from adjacent diatonic

pitches is defined as a value of one, this example contains

pitch-to-pitch stepwise motions of 13 (D#4->E5), 15 (E5-

>C#4), 16 (C#4->F5), and 10 (F5->G4) semitones. It should

be noted that using this method of defining individual notes,

rests are ignored and only note onsets are taken into

account. In this manner, the raw melodic complexity value

sums to 13+15+16+10 or 54 semitones. To account for

varying numbers of notes from excerpt to excerpt, we can

divide this value by the total number of note onsets found in

the excerpt and receive an average level of melodic

complexity for the given excerpt of 10.8 semitones.

The use of additional activity metrics, including

rhythmic activity and harmonic activity are currently under

investigation. Of particular interest is the adaptation of a

rhythmic complexity metric such as one outlined by

Pressing (1998) where each note’s position in a measure

relative to the perceived beat can be weighed towards a

cumulative phrase-level complexity value. By combining

melodic, harmonic and rhythmic complexity calculations, it

holds that a more accurate assessment can be made of the

perceived complexity or activity of a given musical excerpt.

4.2 Note cell selection

Selection of musical data cells for output occurs by

simply correlating GSR activity readings with musical

activity values from respective zones. Cells from the desired

activity zone are given a GUI-defined high probability of

selection from the overall set of musical cells. Cells from

other activity zones are given a correspondingly low

probability of selection. Cells are then selected from this

macro set of probability-scaled data cells and set into a

structure for subsequent output. By selecting musical cells

using probabilities rather than by directly selecting cells

based on their activity levels the level to which a

performer’s bioinformatic data can shape the composition is

left inexact. In this manner, the composition can always

embark on unexpected directions irregardless of its

relationship to the performer.

4.3    Selection of note dynamics

While the current system implementation uses

physiological data primarily to drive the selection of note

cells, other compositional aspects such as dynamic and

articulation can be mapped to data sources and selected

probabilistically. In tests using pre-recorded or modeled

data-streams (EEG, EKG), as well as tests using the live

GSR stream, the windowed activity reading was mapped to

musical dynamic selection on a note-by-note basis.

Mappings are currently applied directly, where a greater

activity reading leads to an increase in probabilistic

weighting for dynamic values in corresponding activity

zones. In this model, a louder dynamic, such as ff  is

regarded as having a greater activity than a softer dynamic,

pp.

4.4   Data formatting and output

When a user-defined threshold of beats of music has

been reached, selected musical cells are converted into the

LilyPond musical score data format using a custom-written

LilyPond parser and output to a text-file. Using Unix shell

calls invoked from Max/MSP, this .ly file is then processed

by LilyPond into a standard .ps postscript file and moved to

a directory being “watched” by a GhostView postscript

viewer application such as kGhostView. Any change to the

file’s modification date results in a refresh of the

kGhostView display. The display is being presented on a

computer monitor to the performer who is then able to

perform the recently generated musical phrase. In recent

performances with the system, it has been useful to generate

two postscript output files for alternate sets of output data,

and to use a vertically-aligned pair of kGhostView display

windows to alternately update sections of the composition.

In this manner, one window of display information can be

updated while the performer is still playing the previously

rendered and displayed window.



5    Performance practice

As an initial test of the system, a series of performances

of probabilistically generated cell-based musical

compositions driven by fluctuations in a performer’s GSR

were given in the Fall of 2005 at Stanford University’s

CCRMA. Cellist Colin Oldham performed a suite of

compositions where short pre-composed phrases of music of

varying complexity and pitch variance were dynamically

selected and presented for performance based on the real-

time windowed analysis of his fluctuating GSR levels.

During these initial performances it became clear that while

the basic nature of real-time composition necessitated a

performer with excellent sight-reading abilities, the pre-

composed nature of this cell-based compositional approach

allowed the performer to study and practice the source

material before performance, greatly reducing performance

error due to surprise. Additionally, by viewing score data in

two independently-refreshed windows, the performer was

able to read ahead while performing less-challenging

materials, again reducing possible performance error.

6 Conclusions

From early testing and performances it is clear that while

the concept of physiological data as a compositional driver

seems viable, great care must be given in choosing

bioinformatic sensors so that fluctuations in body state are

consistent and to an extent predictable within a given range.

While the data generated by the GSR sensor shows

evolution and gradual change over longer time periods (in

the n-seconds range), GSR tracking failed to show adequate

fluctuation following short-term musical events (in the n-

milliseconds range) without extreme stimulation.  State

changes as measured by GSR seem to develop over longer

periods of time rather than discretely measurable periods

and might be a better match with other compositional

parameters, such as part density in a multi-voiced work.

Future directions for the project include development

and integration of additional data sensors, such as EKG,

EEG or body-temperature sensors, which should provide a

more consistently active state across shorter time frames. By

combining a variety of sensors, a more accurate

measurement of physiological state and its reaction to

musical events should be possible. Additional development

of small wired or wireless biosensors capable of

transmitting data over standard protocols  (i.e. USB,

Bluetooth, wireless LAN) is currently under investigation.

Additional testing covering a range of instrumental

performers and compositional excerpts is being planned. In

doing so, more appropriately reactive mappings between

various compositional constructs and performer state should

become clear. Similarly, the implementation of additional

musical activity metrics should provide a more

comprehensive cognitive assessment of perceived activity in

composed musical phrases.
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