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ABSTRACT

This paper presents the results of a user-study measuring users’
perceptions of musically-sonified audio-visual crossmodal cor-
respondences between low-level attributes of motion and sound
in virtual space. Metrics including contour matching, per-
ceived symmetry and crossmodal similarity are calculated and
discussed with the goal of determining strong candidates to
predict user preferences. Study results were analyzed using
the Bradley-Terry statistical model, effectively calculating the
relative contributions of crossmodal attributes within each at-
tribute pairing to the perceived coherence or fit between au-
dio and visual data.

1. INTRODUCTION

Our relationships with sound and space are complex, bounded
on one side by the inflexible laws of physics and on the other
by human cognition and perception. Through experience, ex-
posure and experimentation we each develop a personal cog-
nitive understanding of our sound world. In doing so we are
learning implicitly, continually building and revising internal
models that describe how we expect sound - both environ-
mental as well as musical sound - to accompany certain real-
world interactions [1, 2, 3]. The strike of hammer on steel, the
rumble of a passing train, or the cheering of a frenzied crowd
all are familiar enough sounding events that most of us could
agree that our internal representations of these sounds share
a great number of commonalities. And while each one of us
views and hears the world through different eyes and ears, our
shared experiences within reality’s relatively consistent sound
worlds lead us to expect and predict certain sight-sound inter-
actions in a similar and reasonably consistent way.

When perceiving and experiencing rendered immersive graph-
ical computer environments, humans have the ability to com-
pletely reorient their visual and auditory systems, allowing a
generated reality to take precedence over a physical one. In
these created spaces, motion and gesture can act as direct ex-
tensions of our own physical actions or can be abstracted into
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Figure 1: Study participants viewed video examples showing
avatar motion in virtual space.

forms which would be difficult if not impossible to recreate
within the confines of the physical world. No commonali-
ties of crossmodal interaction are guaranteed when stepping
across the digital frontier and no limits exist to the poten-
tial mappings of sight to sound (and sound to sight) other
than the creativity and whimsy of designer and developer. As
such our personal internal representations must reorient them-
selves within each new virtual experience, often requiring us
to relearn and readjust our expectations while continuously
reforming our own predictive models.

If these interactions can be seen as gateways to new internal
models of sonic representation, how should we consider mu-
sic? Music, with its loose affiliation of time and frequency-
based structures painted with varying degrees of rigor and
haphazard freedom already poses distinct challenges to the
idea of a commonly held perception and internal representa-
tion for all but its most basic elements. Musical form and
function as well as method and meaning vary widely from
composer to composer, not to mention from listener to lis-
tener, across years of history and miles of geography. In
many cases music serves as an external representation of a
composer or performer’s internal sonic world, an abstraction
of any number of ideas, influences and goals into an audi-
ble construct. Our personal internal representations of mu-
sic and musical sound are thusly influenced not only by the
sounds we hear in space but also by the proposed intentions of
composer and performer, whether we consciously understand
them or not. Adding another level of abstraction to such an
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already rich and personal set of representations is a daunt-
ing task, but one we must investigate when bringing together
action and gesture from the visual modality with sound and
musical expression in the auditory modality.

The understanding and analysis of musical sound provides
us a low-level entry point from which we can engage this
problematic. There exists a rich body of physics-based musi-
cal interaction and gesture in the history of instrument design
and performance practice. From the drawing of bow on tuned
string to the strike of hand on drum-head, to the arc of con-
ductor’s baton in space, musical gesture has over time evolved
into a number of basic archetypes that have shaped many of
our own internal representations about how musical sound is
created and controlled. And while these archetypes vary from
culture to culture and from age to age, their grounding in the
physics of the real-world reinforces an inherent commonality
in how humans perceive and internalize musical action and
gesture. But when attempting to create novel sonic and musi-
cal events within rendered environments, there are no require-
ments as to how interaction and generated sound must relate.
Musical sound and the gestures and interactions that create it
can be explored and modified in rendered space by mapping
data-generating process to aspect of sound, anywhere along
the continuum from low-level parameter mapping all the way
to high-level control over elements of musical structure or ab-
stract musical process.

2. CROSSMODAL MAPPING

For composers and media artists seeking to present their own
creative intentions and internal sonic representations to the
outside world, the problem becomes one of crossmodal map-
ping: how to best marry sound generating processes and el-
ements of musical form to visual occurrence within the ren-
dered environment. In doing so we encounter a new prob-
lematic: when motion and action in space can directly cre-
ate and control sound and music from low-level sounding
events to high-level compositional structures, how does one
decide upon the “right” cross modal mapping schema? Turn-
ing towards psychology and cognition, by better understand-
ing mechanisms which drive our memory of and expectation
for the sonic outputs of perceived interactions, physical or
virtual, composers and designers can better generate creative
and musical outputs that “make sense” to their audiences.

As cinema and interactive gaming experiences have grown
more complex and integrated with technological processing,
the interplays between visual action and musical sound have
grown more pronounced and more tightly intertwined. Chore-
ographies of camera angle and on-screen action are routinely
synchronized to musical elements in musical presentations
within motion pictures and music videos. In video game
development it has become increasingly common to design
sonic events generated within gameplay to seamlessly blend
with the game’s musical score [4]. And for games based
around musical paradigms, gesture and motion in both vir-
tual and real-world environments are routinely mapped to dy-
namic music generating and modification processes [5, 6, 7].

3. USER STUDY OVERVIEW

This research explores the perception of crossmodal relation-
ships or correspondences between actions and gestures per-
formed in virtual space and procedurally-generated sound pro-
cesses. During the course of an exploratory user study, sub-
jects were presented with a series of audio-visual stimuli in
the form of short videos depicting humanoid avatar motion
within a rendered three-dimensional environment. Musical
sound, generated by mapping parameters of avatar motion to
sound generating processes, is audible to subjects while view-
ing each video. Each stimulus consisted of video captures
recorded alongside real-time data streams of avatar coordi-
nate motion and state data. Each simple musical sonification
was generated by mapping parameters from each example’s
multidimensional data stream to a set of parameters of a phys-
ically modeled instrument. Composite audio-visual examples
were created by attaching and synchronizing the musical son-
fications to each video example. A visual description of the
study itself, as well as a description of techniques utilized for
creating the audio-visual examples, data-validation method-
ologies and core results for the predictive power of paired
crossmodal attributes can be found in [8].

3.1 Study Procedures

Subjects using the Mechanical Turk online tasking platform
[9] were asked to watch short two-video example sets of these
musically sonified avatar motions in a pairwise comparison
task, choosing the example with the greatest perceived co-
herence or “fit” between visual and auditory events. During
analysis, each visual and audio example was defined through
a combination of motion and sound descriptors, allowing for
the statistical analysis of correlated motion/sound pairs. For
each of these modal pairs a weighted fit value was calculated
and then used to calculate rankings for each example across
the entire sample set, resulting in a measure of the perceived
fit or coherence between individual component pairs across
modalities. The perceived fit of examples exhibiting individ-
ual attributes of motion and sound were also calculated and
ranked. Analyses were performed to gauge the influence of
mapping direction and contour on perceived fit, as well as
a separate analysis investigating the perceived similarity be-
tween examples.

Study participants were presented with a pairwise compar-
ison task and asked to choose the audio-visual example which
exhibited the strongest fit between elements in the visual modal-
ity and elements in the auditory modality. The examples were
short video files showing humanoid avatar motion in a game-
like rendered space (see Figure 1). For each example, one at-
tribute of avatar motion was mapped to one attribute of sound
and used to procedurally generate an audio track. The sound
for each example was generated by sending a given param-
eter of motion using Open Sound Control output from UD-
KOSC [10] to a real-time synthesis process running in Super-
collider. 480 examples across 861 randomly-ordered pairings
were presented, representing each unique combination of 3
attributes of motion, 3 attributes of sound, 2 directional map-
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ping schemata and 1 instrument type. The three attributes of
motion tracked were actor speed, height in coordinate space
and degree of rotation. The three attributes of sound modu-
lated were frequency or pitch, amplitude or volume and breath
pressure, presenting as a timbral shift in tone color for the
physically-modeled clarinet instrument used for each exam-
ple.

3.2 Study Participants

219 unique subjects participated in this study by selecting
the study as an Amazon “Human Intelligence Task” (HIT)
within the Mechanical Turk online interface. To present the
study to a diverse group of participants while still retaining
a high level of accuracy and validity, Workers were required
to have achieved a previous HIT Approval Rate (or percent-
age of approved HITs) greater than or equal to 90% across all
previously submitted tasks. To mitigate potential language
issues, Workers were limited to those users whose locations
(as verified through Amazon’s billing and payments system)
were determined to be in the United States. On average, par-
ticipants completed approximately 28 HITs with a maximum
per-participant HIT count of 392. The entire set of 6027 HITs
was processed in less than eight hours with an average time
of 1 minute 49 seconds for each assignment.

4. CROSSMODAL DATASET

To examine potential crossmodal correlations between pa-
rameters of motion and parameters of sound, an audio-visual
dataset consisting of musically sonified avatar interactions
was recorded, using UDKOSC to both control avatar motion
and record parameter data. Attributes of motion including
avatar speed, rotation and height were mapped to parameters
of a physically-modeled clarinet. Motion attribute data was
linearly scaled for each mapped instrument parameter, so that
a noticeable change in the parameter would be experienced
by subjects viewing and listening to the examples. The at-
tributes of sound driven by motion data include Frequency,
Breath Pressure and Amplitude.

Six examples of avatar motion were recorded depicting the
same humanoid avatar running in various patterns across a
simple room. The primary attributes of motion exhibited in
these examples were speed, rotation, and coordinate height.
The scene was lit in such a way as to show depth of field
in an otherwise feature-sparse environment. In the center of
the space was a simple pedestal construct, similarly used to
establish depth of field. For all visual examples used in this
study, a static camera position was chosen to frame the entire
sequence of motion without changing a viewer’s position or
angle of perspective.

5. DATA ANALYSIS

By framing participants’ subjective preference of crossmodal
media examples as a discrete choice model, this study was
designed to determine both the rank of preference for each

example across the entire participant set as well as the rela-
tive effect of individual attributes and attribute pairs. Rank
of preference and attribute contributions can be determined
using a binomial choice model such at those proposed by
Bradley and Terry [11, 12]. Data analysis was conducted us-
ing the R statistical programming language [13, 14] and the
BradleyTerry2 package [15].

5.1 Bradley-Terry Model

The Bradley-Terry model (BTm) provides a method of ex-
tracting associative rankings from binomial choice datasets.
Commonly used for the evaluation of multiple-participant bi-
nomial competitions such as baseball seasons or chess tourna-
ments, Bradley-Terry has been used to model pairwise com-
parison tasks in fields ranging from genetics to marketing to
election results [16]. By presenting examples to be compared
as ‘competitors’ in a matched pairwise comparison task or
‘contest’, the Bradley-Terry model proposes a logit model
for paired evaluations, capable of ranking examples based
on their ability to ‘win’ a given comparison. One advan-
tage of the Bradley-Terry model when compared to simpler
averaging or mean comparisons is that the BTm factors the
relative strength of competitors when calculating results, so a
‘victory’ in a pairwise comparison over a strong competitor
counts more when calculating ranking scores than a victory
over a weak competitor.

Essentially for any pairwise comparison or contest, the Bradley-
Terry model assumes for any two paired ‘players’, i and j
(i, j ∈ {1, . . . ,K}), the odds that player i beats player j
can be represented as αi/αj , where αi and αj are positively-
valued parameters representing ‘ability’.

To express the Bradley-Terry model using a logit-linear form
we can say

[(i beats j)] = λi − λj , (1)

where λi = logαi for all i. Therefore if we assume inde-
pendence for all contests, maximum likelihood can estimate
parameters {λi}[15].

The Bradley-Terry model can rank ability for explanatory
variables or ‘predictors’ that can be found in each example,
effectively allowing the algorithm to assess which component
attributes of motion and sound in our dataset exhibit the most
or least predictive power in participants’ assessments of rel-
ative fit. And while there do exist extended techniques to
factor ‘ties’ into the Bradley-Terry model [17], for this study
ties were not allowed. Participants were allowed to choose
‘Same’ in their pairwise comparison task; these results were
subsequently excluded from the Bradley-Terry calculation. In
total, 1,487 results were marked as ‘Same’ and were not pro-
cessed by the Bradley-Terry model.

6. CROSSMODAL ATTRIBUTE DESCRIPTORS

At the heart of this study are the crossmodal relationships
and measurable perceptual coherence between attributes of
motion in virtual space and attributes of sound. Attributes
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Figure 2: Contour shapes exhibited in the full dataset. Con-
tours 2-8 were sonified in this user study.

from each modality mirror the parameters used when creat-
ing the crossmodal dataset and were defined as simple direc-
tional binomial descriptors of each parameter of motion and
each parameter of sound. Directional attributes marking the
type and direction of a generalized trait (such as ”increase in
speed”) were used rather than continuous values of attributes
over time. Composite attribute descriptors, showing the coex-
istence of attributes from both modalities were used to search
for trends related to the pairing of crossmodal parameters.
During analysis, the impact of each individual attribute and
crossmodal attribute pair on the aggregate perceived fit was
determined across all examples in the set. For instance, video
excerpts showing an increase in speed mapped directly to fre-
quency would exhibit the composite attribute “Positive Speed,
Positive Frequency” while an excerpt showing an increase in
rotation mapped inversely to breath pressure would exhibit
the composite attribute “Positive Rotation, Negative Breath
Pressure”. In this manner the directionality of each mapping
can be examined both in the context of the direction of its
original source motion as well as in the context of the direct
or inverse mapping schema.

7. RESULTS

7.1 Directional attribute pairs as predictors of fit

Each crossmodal pairing represented by the examples used in
this study can be described as a pair of attributes from both the
visual and auditory modality with an associated parameter-
data direction. The directionality of parameter data from each
modality, or whether a given parameter increases or decreases,
gives us four paired states to consider, i.e. an increase in both
attributes, a decrease in both attributes, or one increase paired
with a decrease. By looking at these pairings as attributes
themselves, we can plot the mean perceived fit for each state,
for each crossmodal attribute pairing. Results detailing the
perceived fit of directional attribute pairs can be found in [8].

7.2 Contour Matching

One particularly interesting way of looking at the parameter
data used in this study involves the reduction of each recorded
motion attribute and generated sound attribute to simple pa-
rameter contours based upon a hypothesis that examples ex-
hibiting matched contours between motion and sound would
exhibit a greater perceived fit. Figure 2 shows nine simple
contour shapes that are exhibited in the full dataset, with con-
tours 2-9 exhibited in parameters sonified in this user study.
For example, contour #2 shows a linearly increasing parame-
ter value, such as would be exhibited by the speed parameter

Figure 3: For examples exhibiting sound contours 2-9, the
mean of fit for both matched (1/green circle) and unmatched
(0/red square) contours are displayed.

during a linear acceleration. During a direct mapping of ac-
celeration to frequency, the contour exhibited by frequency
would also be #2, while if an inverse mapping were to be
used, the contour exhibited would instead be #3.

7.2.1 Mean of Fit Grouped by Contour

Looking at the calculated mean of fit for each contour shape
in Figure 3 we can see the following patterns of behavior:

• For contours 2 and 3, linear increase and decrease, we
can see a discrepancy between the mean fit for matched
contour vs. unmatched contour. For linear increases,
there is a much higher mean of fit for unmatched con-
tours than for matched contours. For linear decreases,
the mean fit values are approximately equal for matched
and unmatched contours. Note that examples exhibit-
ing contours 2 and 3 can display both linear increases
and decreases such as direct and inverse mappings of
speed for the acceleration and deceleration examples,
and direct and inverse mappings of rotation for the con-
tinuous curve example.

• In contours 4 and 5, a sharp parameter increase fol-
lowed by a decrease shows a strong mean fit preference
for the unmatched contour. This is exhibited for inverse
mappings of the height parameter on the jump event
motion example. Similarly, contours 6 and 7, found
when mapping rotation on the discrete turn example,
show a preference for the unmatched contour.

• Contours 8 and 9 show a mean fit preference for a con-
tinuous increase followed by a decrease, as exhibited
when mapping rotation for a circle event. It should
be noted that in these cases, rotation was judged to be
“positive” when the actor turned left, or away from the
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Figure 4: Mean of fit for each sound contour grouped by mo-
tion type is displayed.

camera location. If that choice had been reversed, then
the pattern exhibited in contours 8 and 9 would match
the same patterns evident when looking at contour pairs
4 and 5 or 6 and 7.

• Looking across contours 2 and 3, if the matched con-
tour value for 2 is viewed as paired with the unmatched
contour value in 3, we again see the same mean prefer-
ence for unmatched contours as is evident in contours
4-9. In this case, the similar fit for unmatched contour
2 and matched contour 3 can then be seen as anoma-
lous, in that there is no clear preference for unmatched
contour.

7.2.2 Mean of Fit Grouped by Motion Type

Figure 4 groups means of fit for each contour shape by motion
type. A few key points are summarized below:

• While acceleration, or an increase in speed, shows a
marked preference for an inverse contour (3) over a di-
rect contour (2), both deceleration and curve motions
show little variation in their means of fit between con-
tours 2 and 3.

• Jump and discrete turn motions (respectively 4,5 and
6,7) display stronger mean of fits for inverse mappings
(5,7) than for direct mappings (4,6).

• Circle motions display stronger mean of fit for direct
mappings (8) than for inverse mappings (9).

7.3 Symmetrical Pairings

Following Eitan and Granot, symmetrical example pairings
can be described as example pairs in which both the direc-
tional attributes of motion and the directional attributes of
sound are inverted or diametrically opposed. Figure 7 shows
each possible symmetrical example pairing exhibiting changes

Figure 5: Similarity histogram and plots of example counts.On
the left, a similarity histogram displays the average score dis-
tribution across each of 861 unique example pairings. On the
right, a plot showing total example counts at each similarity
level

for the motion attribute of speed. As this dataset contains mo-
tion examples exhibiting increasing and decreasing speed (ac-
celeration and deceleration) symmetrical pairings can be ex-
amined for mappings to frequency, rotation and breath pres-
sure. The difference in rank for each member of the pair can
be seen in column ∆i while the difference in perceived fit
from column Estimate can be seen in column ∆sym

Two sets of pairings shown in Figure 7 exhibit symmetri-
cal tendencies, that is, their ∆i and ∆sym values are both
extremely low. However the perceived fit (as seen in the Es-
timate column) is fairly low for both pairings with only one
pairing showing significance. For these pairings to exhibit
true symmetrical tendencies, not only should their perceived
fits be approximately the same but they should also be fairly
high.

7.4 Perceived Similarity

The perceived similarity between crossmodal examples pre-
sented to study participants was recorded as a user-chosen
integer value. Participants were presented with the following
question: ‘Please select a value from 1-7 to rank how similar
the audio and video in the above videos are (where “1” means
the two examples are completely different and “7” means they
seem exactly the same).’

The majority of rated pairs were judged to be relatively low
scoring or not similar. Looking at the top twenty-five most
similar pairings from the example set, the following key points
can be seen:

• 20 of the top 25 example pairings ranked for similar-
ity were motion similar, meaning they shared the same
motion sequence with a different sonification or sonifi-
cation mapping direction.

• 2 of the top 25 example pairings were exactly sound
similar, meaning the generated sound result came from
the same mapping contour and parameter range.

• 4 of the top 25 example pairings were inversely sound
similar, meaning the examples were generated from in-
verse mappings of the same contour and parameter range.

• 8 of the top 25 were acceleration/deceleration pairings
sharing similar or inverse contours.
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• Breath pressure examples comprise 9 of the top 10 ex-
amples, while breath pressure paired with gain make
up 29 of the top 50 examples.

To get an overall feel for the influence of individual attributes
of both sound and motion on perceived similarity, Figure 6
displays the average similarity rating for each attribute. Breath
pressure and amplitude both show high relative similarity av-
erages from the sound modality while attributes of motion
acceleration and deceleration show high relative similarity.
The lowest average similarity values can be seen from the
circle motion and frequency sound attribute, both exhibiting
a significantly lower average similarity rating than all other
attributes.

Attribute Avg. Similarity

Breath Pressure 3.568717354
Amplitude 3.56033717

Deceleration 3.470830762
Acceleration 3.455576169

Speed 3.392429793
Height 3.300762732

Turn 3.28860029
Curve 3.282622143
Jump 3.179633362

Rotation 3.167114366
Circle 2.971243035

Frequency 2.777136944

Figure 6: Average similarity for each attribute of motion and
sound.

8. DISCUSSION

These analyses of subjects’ perceived fit of image and sound
components provide some possible insight into the types of
crossmodal correlations we as humans tend to feel are more
coherent. By making use of the Amazon Mechanical Turk
service, the subject pool for this study was extremely large
and avoided common limitations found in academic user stud-
ies that draw small subject counts from extremely homoge-
neous environments. The speed and scale of the Mechanical
Turk service also allowed for incredibly quick turn-around
and validation of user data, affording the study coordinator
the ability to rapidly iterate modifications to the formatting
of the study presentation scripts and dataset. The use of the
Bradley-Terry model for the statistical analysis of user results
reframed the ranking of perceived fit from a scalar ranking
issue to a more manageable pairwise comparison task. The
Bradley-Terry model also presented a methodology for as-
sessing the relative impact of individual and paired attributes
of motion and sound on subjects perceived fit across the entire
study sample set.

8.1 Assessing Perceived Coherence and Fit

While the results answering the first primary goal of this ex-
ploratory study, namely “Which examples exhibited the strongest
fit across all participants?” as well as ranked example results
for the entire study set are detailed in [8], for context it is
worth briefly discussing them here as well.

The study’s top ranked result with a ranking of 0.64579 was
a discrete left turn inversely mapping rotation to frequency,
effectively causing a decrease in frequency during the turn
event. Its inverse mapping - that is a discrete left turn di-
rectly mapping rotation to frequency - exhibits an increase
in frequency and is ranked quite lowly (rank 31). Only one
other turn event was ranked in the top 50% of examples (rank
6, a direct mapping of rotation to breath pressure) suggest-
ing that the turn event itself wasn’t a strong predictor for the
high rank. With regards to specific directional attributes, the
decrease in frequency exhibited by this example does corre-
spond with the relatively strong predictive ability of the fre-
quency decrease attribute.

8.2 Symmetrical Mappings

The role of symmetry in the perception of crossmodal rela-
tionships, or more specifically the conclusion that “musical-
spatial analogies are often asymmetrical, as a musical change
in one direction evokes a significantly stronger spatial anal-
ogy than its opposite” was explored by Eitan and Granot [18].
Their study was based in analogy, with subjects visualizing
and describing attributes of multi-dimensional motion when
prompted by musical auditory stimuli.

In their initial hypothesis of ”Symmetry of associative space”,
Eitan and Granot define crossmodal symmetry:

Other things being equal, diametrically opposed
musical processes <m,−m> would evoke dia-
metrically opposed kinetic processes <k, −k>.
In experimental terms: a listener who associates
a musical stimulus m (e.g., a crescendo) with a
kinetic quality k (e.g., a spatial ascent) would as-
sociate the inverse stimulus −m (e.g., diminu-
endo) with the opposite kinetic quality −k (e.g.,
descent).

Putting this hypothesis into terms that better relate to the ex-
periment presented in this work, where one example exhibits
a high-level of coherence or fit for a directional motion at-
tribute (e.g. an increase in speed) when directly mapped to
a directional sound attribute (e.g. an increase in frequency),
the example exhibiting inverse directions for both motion and
sound attributes (e.g. a decrease in speed mapped to a de-
crease in frequency) would also exhibit a high-level of coher-
ence or fit. Results from asymmetrical pairings of speed ex-
amples show only two example pairs exhibiting symmetrical
tendencies for which the perceived coherence for both pair-
ings is low. The other four example pairs demonstrate weak
asymmetrical tendencies but the perceived fit difference or
∆sym for each is not strong.
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i Motion Estimate Std. Error z value Pr(>|z|) ∆sym ∆i

27 acceleration speed frequency 0.23975 0.18791 1.276 0.201997 0.00103 1
28 deceleration speed frequency 0.23872 0.18816 1.269 0.204544 0.00103 1
18 acceleration speed amplitude 0.36257 0.19695 1.841 0.065632 0.01437 1 .
19 deceleration speed amplitude 0.3482 0.19436 1.792 0.073209 0.01437 1 .
7 acceleration speed breathpressure inverse 0.46355 0.19417 2.387 0.016968 0.069 8 *

15 deceleration speed breathpressure inverse 0.39455 0.19375 2.036 0.041716 0.069 8 *
3 acceleration speed frequency inverse 0.53207 0.18672 2.85 0.004378 0.15891 14 **

17 deceleration speed frequency inverse 0.37316 0.18708 1.995 0.046075 0.15891 14 *
16 acceleration speed amplitude inverse 0.39134 0.19084 2.051 0.040307 0.15941 14 *
30 deceleration speed amplitude inverse 0.23193 0.19346 1.199 0.230595 0.15941 14

8 deceleration speed breathpressure 0.45092 0.19677 2.292 0.021926 0.19024 17 *
25 acceleration speed breathpressure 0.26068 0.18795 1.387 0.165453 0.19024 17

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Estimate Std. Error z value Pr(>|z|)
Std. Dev. 0.05218 0.04974 1.049 0.294

Figure 7: Bradley-Terry model results showing groups of paired symmetries for speed and each sound attribute. Column ∆i
represents the difference in index for each paired symmetry and ∆sym shows the difference in Estimate for each member
of the pair.

9. FUTURE CONSIDERATIONS

With the approaches and methodologies detailed in this study
there are a number of considerations that should be mentioned
and considered for future work.

• To fit this experiment into a simple Mechanical Turk
project template, there was no attempt to engage users
in a minimum (or maximum) number of HITs, rather
they were permitted to submit as many or as few as pos-
sible. This introduces the possibility of a small group
of subjects who processed many HITs exerting more
influence over the results than subjects who processed
less. Due to the scale of unique combinations pre-
sented, a straight-forward within-subjects design would
not have been possible without inducing significant fa-
tigue and likely carryover effects. Similar issues would
complicate a standard between-subjects design. A middle-
ground approach consisting of grouped stimulus pairs
and limited group sizes could be investigated in the fu-
ture to limit such individual impacts.

• While some attributes exhibited in the crossmodal dataset
such as speed were addressed by multiple examples
(acceleration, deceleration, jump event), others such as
height were only exhibited by one example. Additional
examples in the dataset should be created to gauge the
influence of these attributes from multiple directions
and sources. For height, simple examples showing an
avatar walking up and down a slope or jumping up to a
ledge would be useful additions.

• For the sake of consistency in the subject’s viewpoint,
each example in the dataset was created with avatars

moving from screen-left to screen-right. The inverse
direction showing motion from screen-right to screen-
left should be added to take into account the perceived
differences in general directional movement. Similarly
all turn events showed the avatar turning left; examples
showing turns to the right can also be added.

• Rotation examples were all generated using a polar map-
ping where parameter data increases linearly until rota-
tion hits 180 degrees, then decreases until it reaches
360 or 0 degrees. While this mapping schema takes the
human understanding of “forwards” and “backwards”
into consideration, it would be interesting to also ex-
plore a simple linear mapping for rotation.

• Rotation examples mapped turns to the left as increases
in rotation. The mapping of a left turn to an “increase”
in rotation was purely arbitrary and could have easily
mapped a left turn to a decrease in rotation. In studies
where multiple camera views are explored, one possi-
ble mapping of interest would cause rotations towards
the camera to cause parameter increases, while rota-
tions away from the camera would cause corresponding
decreases.

• The use of a human-like avatar was intended to mim-
ick similar avatars commonly used in commercial com-
puter games. While the humanoid paradigm is indeed
common, the motion of limbs and the inherent anima-
tion of the skeletal mesh could potentially be a distrac-
tion when tracking gross motion contours in the envi-
ronment. One solution would be to create the same
motion examples using generic block shapes without
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extraneous limb motion.

• As mentioned previously, the use of confound videos
as markers signifying a subject’s attention to the task at
hand proved to be less successful than intended. This
was in part due to the limited set of two confound videos
and the ease at which workers could select the “correct”
HIT without even watching both videos. To make the
confound videos more accurate predictors of user at-
tention, a larger set of confound videos should be used
to prevent this behavior.

• When subjects were permitted to choose ‘Same’ in the
primary example comparison task, 1,487 results were
marked in this way and subsequently excluded from the
Bradley-Terry model calculations. If users had been
presented with a forced-choice between example 1 or
example 2 these results would have contributed to the
BTm results. Davidson did however propose an exten-
sion to the Bradley-Terry model that can accomodate
the existence of ‘tie’ results [19]. One future task will
be to compare the current BTm results with results us-
ing the Davidson extension.
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