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Emeraude: Who Are We?

INRIA (French National Institute for Research in Digital Science and Technology)
research team based in Lyon (France)

Main Research Interest: Embedded Audio Systems and Their Programming

Gathers the strengths of INRIA, INSA Lyon (Engineering School), and GRAME-CNCM
(birthplace of the Faust programming language)

5 faculty, 4 PhD Candidates, 1 postdoc, 1 engineer, bunch of interns
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What’s an FPGA?

Field-Programmable Gate Array.

Integrated circuit designed to be configured “on the field” using a Hardware Description
Language (HDL).

FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable
interconnects allowing blocks to be wired together.

FPGA performances are limited by: (i) the amount of resources available on the chip, (ii)
the maximum clock at which it can be ran.

FPGAs provide a high level of parallelization.

The two main manufacturers of FPGAs are Xilinx/AMD and Altera/Intel.
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FPGAs and Real-Time Audio Processing

FPGAs offer unique features in the context of audio real-time DSP:

▶ Sample-per-sample computation (no buffering)
▶ High sampling rate (>20MHz)
▶ Extremely low latency
▶ Large number of GPIOs allowing for direct interfacing with audio codec chips, etc.

Highly adapted to audio DSP algorithms with a high potential for parallelization (e.g.,
spatial audio, modal synthesis, etc.)

FPGAs are already used at the heart of some high-end professional audio products.
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Dante Audio Interface Based on a Xilinx Spartan 6
(this one was found in a CCRMA trashcan ;) ). In this specific case, the power of the FPGA is
exploited to interface with multiple audio codec chips in parallel and to compute a large

number of audio channels.
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Novation Summit Keyboard
(this one was not found in a CCRMA trashcan ;) ). In this specific case, the power of the

FPGA is exploited to implement digital oscillators running at a very high audio sampling rate
(about 24MHz), approximating analog...
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Antelope Audio Synergy Core Series
High-end audio interfaces and processors based on FPGAs. In this specific case, FPGAs are

used for their computational power.
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Now if FPGAs are so great for audio,
why don’t we see more of them (both in

the industry and in academia)?
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Because they’re extremely hard to program and their
architecture is intrinsically low-level...
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Basic Audio-FPGA System Architecture

DDR

Audio Codec

Sensors ADC

FPGA

CPU

Audio Inputs Audio Outputs

Sensors (e.g., Pots, etc.)
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Programming an FPGA-Based Board for Audio Applications:
a Challenging Task

Interfacing the CPU and the FPGA

Interfacing DDR (RAM) with the CPU and the FPGA

Balancing computation between the CPU and the FPGA

All of the above imply important design choices (e.g., what goes in the RAM, on the
FPGA, on the CPU, etc.?)

Interfacing the FPGA with audio codec chips

Dealing with clocking issues

Dealing with hardware description languages (i.e., Verilog or VHDL) implying the use of
fixed-point arithmetic

Etc.
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Dev Board Based on an FPGA: the Digilent Zybo Z7
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Faust comes to the rescue!
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What is Faust?

Faust is a functional programming language for real-time audio signal processing.

It has been developed for the past 20 years by members of the Emeraude team and a
worldwide community.

The Faust compiler can target a wide range of languages such as C, C++, Java, LLVM,
Web Assembly, Rust, and many more.

The Faust compiler provides a high level of control on the generated code.

One of Faust’s strength lies in its DSP libraries implementing hundreds of algorithms:
filters, generators, audio effects, etc.

Faust is open source: https://faust.grame.fr
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SyFaLa: Faust -> FPGA

SyFaLa is an open-source tool developed by the Emeraude team allowing for the
programming of Zybo Z7 and Ultracale Genesys FPGA-based boards with Faust:
https://github.com/inria-emeraude/syfala

SyFaLa heavily relies on High Level Synthesis (HLS) tools provided by Xilinx.

The Faust FPGA IP (Intellectual Property) is produced using HLS
(Faust -> C++ -> HLS -> IP).

A specific Faust backend was created in the context of SyFaLa to target HLS and
architectures based on a CPU and an FPGA with potential external memory (i.e., DDR).

SyFaLa supports various external audio codecs (e.g., Analog Devices ADAU 1777, ADAU
1787, etc.) with various configurations (e.g., Time Division Multiplexing/TDM, different
codecs used in parallel).

A series of open-source modular sister boards for the Zybo Z7 that can be used to
control the parameters of audio DSP have been implemented.

Much more...

15 29
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SyFaLa Toolchain Overview

sine.cpp
IP

sineApp.cpp
App arm.cppfpga.cpp

Faust compiler
sine.dsp

Faust

vitis_hls / vivado vitis / gcc

app.elf

ARM

IP Faust

I2S
SoC

DDR

ZYBO

Codec

Audio

Controls
0

1
2
3
4 5 6

7
8
9

10

SPI/UART
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Typical Example of a Faust Program Running On
an FPGA Through SyFaLa

import (" stdfaust.lib");
f = hslider ("freq[knob :1]" ,400 ,50 ,2000 ,0.01);
sineOsc = os.oscrs(f);
echo = +~@(ma.SR *0.5)*0.5;
process = sineOsc : echo : *(0.5);

os.oscrs is a sinusoidal oscillator based on 2D vector rotation, undamped
“coupled-form” resonator (lossless 2nd-order normalized ladder filter).

To compute the coefficients of the ladder filter from the frequency parameter, the sin
and cos functions are needed: these operations should be carried out on the CPU to
save FPGA space.

The long delay in the echo implies the use of a lot of memory: DDR should be used.

The freq parameter here is controlled by a hardware potentiometer connected to the
the sensor ADC.

17 29
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os.oscrs is a sinusoidal oscillator based on 2D vector rotation, undamped
“coupled-form” resonator (lossless 2nd-order normalized ladder filter).

To compute the coefficients of the ladder filter from the frequency parameter, the sin
and cos functions are needed: these operations should be carried out on the CPU to
save FPGA space.

The long delay in the echo implies the use of a lot of memory: DDR should be used.
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Corresponding FPGA Implementation

DDR
- Echo Delay

Sensors ADC

FPGA
- Filter-Based Sine Osc

- Echo

CPU
- Filter coefs computation

Audio CodecAudio Inputs Audio Outputs

Potentiometer
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Modular Control Interface: the “Popophone”

Sister board provided as part of SyFaLa. It is based on a TI sensor ADC and it can host
various controllers: push buttons, rotary and linear potentiometers, etc.
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Performances, Applications,
and Research Avenues
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Ultra-Low Latency: Towards More Efficient Active Control

When used with audio codec chips optimized for latency such as the ADAU 1787,
ultra-low latency performances can be obtained with our system.

The lowest “round-trip” latency that we managed to achieve so far is 11µs (at a
sampling rate of 768kHz).

Multiple ADAU 1787 codecs can be used on one FPGA. Hence, implementing a system
with 32 audio inputs and 32 audio outputs whith such performances can be easily done
on a basic Zybo Z7 board.

Most applications enabled by such performances are related to active acoustic control
(e.g., augmented instruments, noise cancellation, room acoustics, etc.).
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The FAST Project: Faust -> FPGA -> Active Control of Acoustics

FAST gathers the strength
of GRAME-CNCM, INSA
Lyon, INRIA, and LMFA.

FAST is funded by the
French National Agency
for Research (ANR).

2 PhDs, 1 PostDoc, many
interns

https://fast.grame.fr/
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Ultra-High Audio Sampling Rate: When Discrete Becomes
Continuous

Collaboration with Victor Lazzarini and Joe Timoney at Maynooth University (Ireland).

Sigma-Delta ADCs and DACs are directly implemented/coded on the FPGA allowing
regular digital GPIOs to be used as analog inputs and outputs.

Few electronic components (one resistor and two capacitors for each input/output) are
needed as long as a very high sampling rate is used.

Audio sampling rate up to 25MHz. High sampling rate has a limited impact on the FPGA
performances.

Measured SNR below -96dB with a Σ∆ or order 5.

Opens the door to audio latency way below 1µs and to potentially some new ways to
approach audio DSP.

This is an ongoing project: we have a working DAC, we’re now working on the ADC.
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PLASMA: Multichannel Audio on FPGA

PLASMA is an associate research project between CCRMA and Emeraude co-funded by Stanford
and INRIA/INSA aiming at exploring the potential of FPGAs in the context of spatial audio.

Some audio codec chips can be multiplexed using TDM (Time Division Multiplexing)
through a very low number of GPIOs, i.e., 2 + 1 GPIOs for 16 audio channels on the most
powerful codecs such as the ADAU 1787 as long as very fast clocks can be produced.

FPGAs have lots of GPIOs (32 of the Zybo Z7, way more on the Genesys), can produce
very fast clocks, and can compute large numbers of digital audio streams in parallel.

Hence, in theory, hundreds of audio channels can be processed in parallel.

Initial experiments show that the main bottleneck is the potential number of memory
accesses done by the system in DDR rather than actual computational power. Hence,
algorithm with small memory footprints can run without a problem.
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Centralized FPGA-Based Approach for Spatial Audio

A large number of audio codec chips are
connected to the FPGA using i2s TDM.

The FPGA is fully programmable in
Faust (i.e., Wave Field Synthesis,
Ambisonics, etc.).

Sound sources are provided to the
system as analog audio inputs.

The system is controlled using a laptop
connected to the FPGA, OSC, etc.

Faust Program FPGA Board

Audio Codec Chips (Inputs)

Audio Codec Chip 
(Outputs)

Audio Codec Chip 
(Outputs)

Audio Codec Chip 
(Outputs)

[...]

Control Interface

Sound Sources

I2s TDM
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Towards Affordable WFS/Spatial Audio?

Prototype of a SyFaLa-based WFS system (programmed in Faust) using cheap ($6, well $3 a
year ago lol) Adafruit i2s amplifiers (MAX98357A):
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Performances Overview

Best measured round-trip latency using an audio codec: 11µs
Best theoretical round-trip latency using built-in Σ∆ ADC and DAC: 100ns
Theoretical maxim number of audio inputs and outputs on a Zybo Z7-20 using
audio codecs: 480x480 (more than 1000x1000 on a Genesys board)

Maximum number of biquads running on a Zybo Z7-20 (intermediate range
FPGA): 150
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Improving SyFaLa: Where to Go From Now?

Allowing Faust to generate fixed-point C++ code (we currently have a postdoc working
on this topic).

Having a fully operational VHDL Faust backend (we have a working prototype, but it
has some limitations).

Parallelizing the code generated by Faust.

Continuing to improve Faust to make it an industry-grade tool (e.g., finally
enabling multi-rate, facilitating linear algebra, etc.).
Improving Linux integration.

Using our system in the context active control of room acoustics (i.e., FAST project).

Working more on spatial audio (i.e., PLASMA project, WFS, ambisonics, FPGA-based
ambisonic microphone, etc.).
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Thanks! :)
DSP seminar on Friday (Oct. 28th) on “Compiling Audio DSP for FPGAs Using the Faust

Programming Language and High Level Synthesis”

Send your questions to: romain.michon@inria.fr

More @: https://team.inria.fr/emeraude

Slides @: https://ccrma.stanford.edu/~rmichon/talks/ccrma-colloq-oct22.pdf
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romain.michon@inria.fr
https://team.inria.fr/emeraude
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