Faust Android API

This API allows to interact with a natively compiled Faust object and its
associated audio engine at a very high level from the JAVA layer of an Android
app. The idea is that all the audio part of the app is implemented in Faust
allowing developers to focus on the design of the app itself.

For more details on how to create Android apps from scratch using this tool, check
the faust2api documentation or the Adding Faust Real-Time Audio Support to
Android Apps Tutorial.

Using This Package

This section is an accelerated version of the Adding Faust Real-Time Audio
Support to Android Apps Tutorial. We strongly recommend you to read it if this
is the first time that you use this tool or if you never used the Android NDK
(Native Development Kit).

App Set-Up

Very little work has to be done to integrate this package to your Android app.
Once this is done, you will be able to interact with the Faust DSP module from
JAVA without having to write a line of native C++ code.

This package contains 2 folder: /cpp and /java. cpp hosts the native C++
elements that should be placed in the NDK folder of your app. /java contains
the JAVA classes that should be placed in the java folder of your app in
accordance with the JAVA package that was configured when faust2api was
ran. The default package name is com.DspFaust, thus, in that case, the content
of /java should be placed in java/com/DspFaust. You can check the faust2api
documentation to get more information about that.

In order for things to compile, your Gradle file should have an externalNativeBuild
with something like that in it:

externalNativeBuild {
cmake {
cppFlags "-03 -fexceptions -frtti -10penSLES"
}
3

Also, the NDK CMake file should look like this:

cmake_minimum_required (VERSION 3.4.1)
add_library(

dsp_faust

SHARED

https://ccrma.stanford.edu/~rmichon/faust2api
https://ccrma.stanford.edu/~rmichon/faustTutorials/#adding-faust-real-time-audio-support-to-android-apps
https://ccrma.stanford.edu/~rmichon/faustTutorials/#adding-faust-real-time-audio-support-to-android-apps
https://ccrma.stanford.edu/~rmichon/faustTutorials/#adding-faust-real-time-audio-support-to-android-apps
https://ccrma.stanford.edu/~rmichon/faustTutorials/#adding-faust-real-time-audio-support-to-android-apps
https://ccrma.stanford.edu/~rmichon/faust2api/
https://ccrma.stanford.edu/~rmichon/faust2api/

src/main/cpp/java_interface_wrap.cpp
src/main/cpp/DspFaust.cpp
)
find_library(log-lib log)
target_link_libraries(dsp_faust ${log-1lib})

Finally, since your Faust object might need to access the audio input of your
device, the following line should be added to the manifest of your app (typically
before the application tag):

<uses-permission android:name="android.permission.RECORD_AUDIQ"/>

After this, re-synchronize Gradle and try to compile the Android app. Hopefully,
things should go well!

Using the JAVA API

The Faust JAVA API is designed to seamlessly integrate to the life cycle of an
Android app. It is accessible through a single DspFaust object. The constructor
of that object is used to set the sampling rate and the block size:

DspFaust dspFaust = new DspFaust(SR,blockSize);

The start () method is used to start the audio computing and would typically
be placed in the onCreate () method of the app activity.

Similarly, stop() can be called to stop the audio computing and can be placed
in onDetroy(), etc.

Garbage collection on the native side is taken care of so you don’t have to worry
about it.

It is possible to interact with the different parameters of the Faust object by
using the setParamValue method. Two versions of this method exist: one
where the parameter can be selected by its address and one where it can be
selected using its ID. The Parameters List section gives a list of the addresses
and corresponding IDs of the current Faust object.

If your Faust object is polyphonic (e.g. if you used the -polyvoices option when
generating this APT), then you can use the MIDI polyphony methods like keyOn,
keyOff, etc.

It is possible to change the parameters of polyphonic voices independently using
the setVoiceParamValue method. This method takes as one of its arguments
the address to the voice returned by keyOn or newVoice when it is called. E.g:

long voiceAddress = dspFaust.key0On(70,100);
dspFaust.setVoiceParamValue(1,voiceAddress,214);
dspFaust.key0£ff (70);

In the example above, a new note is created and its parameter ID 1 is modified.
This note is then terminated. Note that parameters addresses (path) are different
for independent voices than when using setParamValue. The list of these
addresses is provided in a separate sub-section of the Parameters List section.

Finally, note that new voices don’t necessarily have to be created using keyOn.
Indeed, you might choose to just use the newVoice method for that:

long voiceAddress = dspFaust.newVoice;
dspFaust.setVoiceParamValue(1,voiceAddress,214);
dspFaust.deleteVoice(voiceAddress) ;

This is particularly useful when making apps where each finger of the user is an
independent sound that doesn’t necessarily has a pitch.

Parameters List
Main Parameters

/synth/cutoff
/synth/freq
/synth/gain
/synth/gate
/synth/q

L]
oo

API Reference

DspFaust (int SR, int BS)

Constructor.

Arguments

e SR: sampling rate
e BS: block size

bool start()

Start the audio processing.

Returns true if successful and false if not.

void stop()

Stop the audio processing.

bool isRunning()

Returns true if audio is running.

long keyOn(int pitch, int velocity)

Instantiate a new polyphonic voice. This method can only be used if the
[style:poly] metadata is used in the Faust code or if the -polyvoices flag
has been provided before compilation.

keyOn will return 0 if the Faust object is not polyphonic or the address to
the allocated voice as a long otherwise. This value can be used later with
setVoiceParamValue or getVoiceParamValue to access the parameters of a
specific voice.

Arguments

o pitch: MIDI note number (0-127)
o velocity: MIDI velocity (0-127)

int keyOff(int pitch)

De-instantiate a polyphonic voice. This method can only be used if the
[style:poly] metadata is used in the Faust code or if the -polyvoices flag
has been provided before compilation.

key0ff will return 0 if the object is not polyphonic and 1 otherwise.

Arguments

o pitch: MIDI note number (0-127), should be the same as the one used for
keyOn

long newVoice()

Instantiate a new polyphonic voice. This method can only be used if the
[style:poly] metadata is used in the Faust code or if -polyvoices flag has
been provided before compilation.

keyOn will return 0 if the Faust object is not polyphonic or the address to
the allocated voice as a long otherwise. This value can be used later with
setVoiceParamValue, getVoiceParamValue or deleteVoice to access the pa-
rameters of a specific voice.

int deleteVoice(long voice)

De-instantiate a polyphonic voice. This method can only be used if the
[style:poly] metadata is used in the Faust code or if -polyvoices flag has
been provided before compilation.

deleteVoice will return O if the object is not polyphonic and 1 otherwise.

Arguments

e voice: the address of the voice given by newVoice

void propagateMidi(int count, double time, int type, int channel,
int datal, int data2)

Take a raw MIDI message and propagate it to the Faust DSP object. This
method can be used concurrently with keyOn and keyOff.

propagateMidi can only be used if the [style:poly] metadata is used in the
Faust code or if —~polyvoices flag has been provided before compilation.

Arguments

o count: size of the message (1-3)

e time: time stamp

e type: message type (byte)

e channel: channel number

e datal: first data byte (should be null if count<2)

¢ data2: second data byte (should be null if count<3)

const charx getJSON()

Returns the JSON description of the Faust object.

int getParamsCount ()

Returns the number of parameters of the Faust object.

void setParamValue(const char* address, float value)

Set the value of one of the parameters of the Faust object in function of its
address (path).

Arguments

o address: address (path) of the parameter
e value: value of the parameter

void setParamValue(int id, float value)
Set the value of one of the parameters of the Faust object in function of its id.

Arguments

e id: id of the parameter
e value: value of the parameter

float getParamValue(const char* address)

Returns the value of a parameter in function of its address (path).

Arguments

o address: address (path) of the parameter

float getParamValue(int id)

Returns the value of a parameter in function of its id.

Arguments

e id: id of the parameter

void setVoiceParamValue(const char* address, long voice, float
value)

Set the value of one of the parameters of the Faust object in function of its
address (path) for a specific voice.

Arguments

o address: address (path) of the parameter
e voice: address of the polyphonic voice (retrieved from keyOn
e value: value of the parameter

void setVoiceValue(int id, long voice, float value)

Set the value of one of the parameters of the Faust object in function of its id
for a specific voice.

Arguments

e id: id of the parameter
e voice: address of the polyphonic voice (retrieved from keyOn
e value: value of the parameter

float getVoiceParamValue(const char* address, long voice)

Returns the value of a parameter in function of its address (path) for a specific
voice.

Arguments

e address: address (path) of the parameter
e voice: address of the polyphonic voice (retrieved from keyOn)

float getVoiceParamValue(int id, long voice)
Returns the value of a parameter in function of its id for a specific voice.

Arguments

e id: id of the parameter
o voice: address of the polyphonic voice (retrieved from keyOn)

const char* getParamAddress(int id)

Returns the address (path) of a parameter in function of its ID.

Arguments

e id: id of the parameter

const charx getVoiceParamAddress(int id, long voice)
Returns the address (path) of a parameter in function of its ID.

Arguments

e id: id of the parameter
o voice: address of the polyphonic voice (retrieved from keyOn)

void propagateAcc(int acc, float v)

Propagate the RAW value of a specific accelerometer axis to the Faust object.

Arguments

o acc: the accelerometer axis (0: x, 1: y, 2: z)
o v: the RAW acceleromter value in m/s

void setAccConverter(int p, int acc, int curve, float amin, float
amid, float amax)

Set the conversion curve for the accelerometer.

Arguments

o p: the Ul parameter id

o acc: the accelerometer axis (0: x, 1: y, 2: z)

e curve: the curve (0: up, 1: down, 2: up and down)
e amin: mapping min point

e amid: mapping middle point

e amax: mapping max point

void propagateGyr(int gyr, float v)
Propagate the RAW value of a specific gyroscope axis to the Faust object.

Arguments

o gyr: the gyroscope axis (0: x, 1: y, 2: z)
o v: the RAW acceleromter value in m/s

void setGyrConverter(int p, int gyr, int curve, float amin, float
amid, float amax)

Set the conversion curve for the gyroscope.

Arguments

o p: the Ul parameter id

o acc: the accelerometer axis (0: x, 1: y, 2: z)

e curve: the curve (0: up, 1: down, 2: up and down)
e amin: mapping min point

e amid: mapping middle point
e amax: mapping max point

float getCPULoad()

Returns the CPU load.

10

	Faust Android API
	Using This Package
	App Set-Up
	Using the JAVA API

	Parameters List
	Main Parameters

	API Reference
	DspFaust(int SR, int BS)
	bool start()
	void stop()
	bool isRunning()
	long keyOn(int pitch, int velocity)
	int keyOff(int pitch)
	long newVoice()
	int deleteVoice(long voice)
	void propagateMidi(int count, double time, int type, int channel, int data1, int data2)
	const char* getJSON()
	int getParamsCount()
	void setParamValue(const char* address, float value)
	void setParamValue(int id, float value)
	float getParamValue(const char* address)
	float getParamValue(int id)
	void setVoiceParamValue(const char* address, long voice, float value)
	void setVoiceValue(int id, long voice, float value)
	float getVoiceParamValue(const char* address, long voice)
	float getVoiceParamValue(int id, long voice)
	const char* getParamAddress(int id)
	const char* getVoiceParamAddress(int id, long voice)
	void propagateAcc(int acc, float v)
	void setAccConverter(int p, int acc, int curve, float amin, float amid, float amax)
	void propagateGyr(int gyr, float v)
	void setGyrConverter(int p, int gyr, int curve, float amin, float amid, float amax)
	float getCPULoad()

