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 ABSTRACT

It has been stated that the inverse filtering of room transfer
functions is possible using multiple inputs under certain
conditions [1].   In this paper we address these conditions from a
numerical perspective.  A method is developed to determine the
numerical precision of multiple input inverse filtering
techniques.  This method is applied to two simulated rooms, and
the numerical precision is estimated as a function of the number
of inputs and outputs into the system.

1. INTRODUCTION

Many authors have investigated the application of signal
processing techniques to the problem of inverse filtering a room
transfer function from a signal. This is done to decrease possible
unwanted factors such as reverberation and spectral coloration,
which are causes of degraded fidelity and intelligibility.

The inversion of a room transfer function is known to be a
difficult task, because of the presence of non-minimum phase
zeros, which can not be compensated by causal, stable filters [2].
If the input signal is delayed by a suitable amount, an
approximate inversion can be obtained by least squares or
homomorphic techniques [3].

The availability of multiple sound sources and/or multiple
receivers can help in finding an exact solution to the inversion
problem. Miyoshi and Kaneda proposed a method called MINT,
which makes use of some fundamental results of multivariable
system theory[1]. In practice, the finite precision of measured
impulse responses along with the inversion of poorly
conditioned matrices, may pose numerical limitations to this
method.  In this paper, we investigate the numerical behavior of
some simulated room transfer functions, in the context of
multiple input inversion methods.

2. BACKGROUND

Consider N loudspeakers (inputs) and M<N microphones
(outputs) in  a room. We want to insert an FIR filter before each
of the sources in such a way that a given source signal is
transmitted to each of the outputs unaffected by the room
response. The scheme is  depicted in figure 1.

Figure 1: Diagram of a multiple input / output formulation of
the inverse filtering problem.  G is room transfer matrix whose
elements, Gi j, are the transfer polynomials from the jth input to

the ith output.

G zi j, ( )−1  is the polynomial transfer function of the room from

the input j to the output i. H zj ( )−1  is the FIR  compensator to be

applied to the j-th input. The problem thus becomes one of
finding the solution to a system of polynomial equations:
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where D T= [ ]1 1 1L , for the problem of inverse filtering.

By changing the vector D we might solve other problems such as
transmitting a signal only to one output.

In order to make use of standard results for polynomial matrices,
equation 1 is rewritten as:
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A necessary and sufficient condition for the existence of a
solution  to equation 2 is that every left greatest common divisor
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of G1 and G2  is a left divisor of D[4].  Now, consider the Bezout

identity for the polynomial matrices G1 and G2 :

I G W G W= +1 1 2 2 (3)

where I is the M x M identity matrix, W1  is a  M x M matrix, and

W2  is a  (N-M) x M matrix. If  a solution to the Bezout identity

exists, then we can form a solution to equation 2 by adding the
columns of W1  and W2  to form the vectors H1 and H2

respectively.  More generally, if a solution to equation 3 exists,
we can find the solution to equation 2 for any D, by right-
multiplication by W1  and W2 .

A polynomial solution to the Bezout identity exists if and only if
the two polynomial matrices G1 and G2  are mutually coprime,

i.e., the matrix G never drops rank[4].  Namely, the Bezout
identity admits a solution if and only if there exists two
unimodular matrices U and V such that

G USV= (4)

with S I M= 0 .  Equation 4 is called the Smith Canonical

form of G.

When this condition holds, a block Toeplitz time domain matrix,
formed of the impulse response measurements of each of the
transfer functions of the system, can be inverted in order to solve
for the appropriate filter coefficients, i.e. [1].  In this
equation, script variables are used to denote the time domain
counterparts of the matrices in equation 1.

It has been stated that coprimeness is usually achieved “except
for some symmetrical positions.”[1] As far as we know, nobody
has investigated the validity of this statement and its
implications in the context of practical realizations.   Strictly
speaking, we need to determine if the matrix  is full rank.  A
more appropriate question regards the condition number of the
matrix.   Due to noise inherent in measurements, the matrix will
likely be full rank, hence we are interested in cases where the
matrix exhibits near singular behavior.  As will be shown, this
will impact the numerical precision of the filters designed with
these methods.

This type of analysis involves the singular value decomposition
of a matrix.  Due to the high dimensionality of the time domain
matrix, it is impractical to do this directly.  In what follows, we
develop the relation between the condition number of the time
domain matrix and the transfer matrices evaluated over
frequency.  In this way, the analysis is reduced in dimension to a
set of N x M matrix decompositions.  Using these techniques,
the singular behavior is studied as the number of inputs and
outputs are varied.

3. NUMERICAL ANALYSIS

The condition number of a matrix is defined as the ratio of the
maximum and minimum singular values of a matrix.  In order to
determine  the condition number of the time domain matrix, we
must bound the singular values.  The maximum and minimum
singular values are defined as:

σ σmax minmax min= =
x xx

x

x

x

x
         , (5)

where the norms used in the above equations are the Euclidean
or L2  norms.  Another way to state this is that given any vector,

we can form a bound on the maximum and minimum singular
values in the following manner:
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Consider a finite length time domain vector v, comprised of a
complex exponential with unitary Euclidean norm and
frequency f0 .  This can be used to construct a vector x f0

 in the

following manner:     
x v v vf n

T

0 1 2= α α α| | |L (7)

 In the above expression, the αi s’  represent a complex weight

applied to the vector v at each input of the system. We need to
consider the Euclidean norm of the vector y f0

 given by.

y xf f0 0
= (8)

We can transform this matrix equation to an equivalent equation
involving the transfer matrix, through multiplication by the DFT
matrix.  This operation preserves the Euclidean norm since the
DFT matrix is unitary.   After doing this, we have:

% % %Y GXf f0 0
= (9)

In the above expression %X f0
 is of the form:

% | | |X f n0
0 0 0 0 0 01 2= L L L L L L Lα α α (10)

Since each section of the vector x f0
 consists only of a single

frequency, all components of  %X f0
 are zero, except for those

elements corresponding to the frequency f0 .  Due to the sparse

nature of this vector, we simplify it to the equivalent, lower
dimensional problem:

Y G f Xf f0 00= ( )  (11)

where we consider only the nonzero elements of %X f0
 and %Yf0

,

and the corresponding columns in the matrix %G . This results in
the following:
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Hence, G is simply the transfer matrix evaluated at the
frequency f0 .  Note that the vectors X f0

 and x f0
 have the same

norm since they are related by the DFT which is unitary.

As stated previously, the condition number of the time domain
matrix is given by:
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where σ σmax min( ), ( )  are the maximum and minimum

singular values.  We can bound the numerator term in equation
13 as the maximum over both frequency and the α  values in
equation 7.
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The equality in equation 14 makes use of the fact that X f0
 and

x f0
 have the same lengths.  A similar relation can be derived for

the minimum singular value, which results in the following
bound for the condition number:
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 κ  can now be used to make a statement concerning the
numerical precision of the inverted matrix.  In practice, the time
domain matrix is constructed from impulse response
measurements determined through experimental means, and
hence exhibit finite numerical precision.  We can express the
inherent numerical error in the following manner.

$ ∆ (16)

where $  is the matrix of measured impulse responses,  is the
actual value, and ∆  is the error.  As stated in an earlier section,
the filters which are applied to the inputs of the multiple input
system are given by:

= $ (17)

We can express the relative error in  as[5]:

∆ ∆
≤ κ( ) , (18)

where  denotes the spectral norm of the matrix, which is

defined as its maximum singular value.  This can be interpreted
directly in terms of  bits of precision of the resultant filters,

# ( ) # ( ) log ( ( ))bits bits= − 2 κ (19)

ROOM: 1 2
x y z x y z

dimension 6 7.1 8.6 8 10 6
 Source1 7.0 .50 1.4 .93 .50 .97
Source2 7.0 .50 7.9 .93 .50 2.7
Source3 5.2 .50 1.4 6.9 .50 .97
Source4 5.2 .50 7.9 6.9 .50 2.7
Source5 .35 .50 4.3 .46 .50 3.0
Source6 3.0 .50 8.3 4.0 .50 5.7
Source7 3.0 .50 7.0 4.0 .50 .48
Source8 5.6 .50 4.3 7.5 .50 .19
Rcvr1 1.9 5.9 1.0 2.6 8.2 1.0
Rcvr2 4.0 5.9 1.0 5.4 8.2 1.0
Rcvr3 1.9 6.5 2.0 2.6 9.1 2.0
Rcvr4 4.0 6.5 2.0 5.4 9.1 2.0

Table 1: Room geometry and source / receiver locations for the
simulations (in meters).

4. SIMULATION

A. Description

In order to study the singular behavior of the transfer matrix,
simulations were performed using two rooms with rectangular
geometry.  Impulse responses were generated using the image
method [6].  For the purpose of this experiment, a sampling rate
of 1KHz was used, hence only low frequency behavior was
studied.  Each impulse response was calculated for a duration of
1 second.

Eight Sources and four receivers were used, and impulse
responses were generated for each of the 32 input output
combinations.  The room dimensions, and source / receiver
locations are shown in table 1.  The first room used the ratios
1:1.186:1.439 to determine the length width and height.  These
have been shown to be optimal in the sense that they minimize
the deviation of the modal distribution from the asymptotic
hyperbolic curve[7].  The second room used the ratios of 3:4:5.
Both rooms used reflection coefficients of .7 on all boundary
surfaces.  Sources and receivers were assumed to be
omnidirectional in nature.
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Figure 2: Plot of condition number versus number of inputs for
room 1.    The curves are for the cases of inverse filtering at 1
(’o’)  through 4 (’ * ’) outputs.

B. Results

Subsets of the 32 impulse responses were studied for each room
in order to examine the behavior of the system as inputs or
outputs were added.  For each of these subsets of data, a transfer
matrix was constructed, and its singular values were calculated
over a range of frequencies.  Equation 15 could then be used to
relate this data to the condition number of the corresponding
time domain matrix.

Figures 2 and 3 show the results for each of  2 rooms.  These
plots should be interpreted as the loss in numerical precision of
the filter coefficients, resulting from the inversion of the time
domain matrix.  This number can be expressed both in dB as
well as bits of precision.  For example, in room 2, we notice a
loss in precision of  approximately 18 dB or 3 bits when 4 inputs
are used with 1 output.  Hence, the resulting precision of the
compensation filters would be 3 bits less than that of the
measured impulse responses.

Not surprisingly, the condition number decreases, and hence
numerical performance is enhanced as the number of inputs is
increased.  Conversely, the condition number increases at the
rate of approximately 1 bit for each output added.  Both rooms
exhibited similar   in this respect.

5. CONCLUSION

Two rooms were studied in the context of inverse filtering using
multiple input techniques.  The analysis provides an estimate of
the loss in numerical precision of the compensation filters,
which occurs due to the inversion of a matrix.  It was shown that
the condition number of the time domain matrix is related to the
singular values of the transfer matrix evaluated over frequency.
This provides an efficient way to study the singularities of the

larger time domain matrix.  Furthermore, this study provides
insight into the level of benefit the inverse filtering operation
receives when the number of inputs is increased.
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Figure 3: Plot of condition number versus number of inputs for
room 2.  The curves are for the cases of inverse filtering at 1 ('o')
through 4 ('*') outputs.


