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 ABSTRACT



It has been stated that the inverse filtering of room transfer
functions is possible using multiple inputs under certain
conditions [1].   In this paper we address these conditions from a
numerical perspective.  A method is developed to determine the
numerical precision of multiple input inverse filtering
techniques.  This method is applied to two simulated rooms, and
the numerical precision is estimated as a function of the number
of inputs and outputs into the system.



1. INTRODUCTION



Many authors have investigated the application of signal
processing techniques to the problem of inverse filtering a room
transfer function from a signal. This is done to decrease possible
unwanted factors such as reverberation and spectral coloration,
which are causes of degraded fidelity and intelligibility.



The inversion of a room transfer function is known to be a
difficult task, because of the presence of non-minimum phase
zeros, which can not be compensated by causal, stable filters [2].
If the input signal is delayed by a suitable amount, an
approximate inversion can be obtained by least squares or
homomorphic techniques [3].



The availability of multiple sound sources and/or multiple
receivers can help in finding an exact solution to the inversion
problem. Miyoshi and Kaneda proposed a method called MINT,
which makes use of some fundamental results of multivariable
system theory[1]. In practice, the finite precision of measured
impulse responses along with the inversion of poorly
conditioned matrices, may pose numerical limitations to this
method.  In this paper, we investigate the numerical behavior of
some simulated room transfer functions, in the context of
multiple input inversion methods.



2. BACKGROUND



Consider N loudspeakers (inputs) and M<N microphones
(outputs) in  a room. We want to insert an FIR filter before each
of the sources in such a way that a given source signal is
transmitted to each of the outputs unaffected by the room
response. The scheme is  depicted in figure 1.



Figure 1: Diagram of a multiple input / output formulation of
the inverse filtering problem.  G is room transfer matrix whose
elements, Gi j, are the transfer polynomials from the jth input to



the ith output.



G zi j, ( )−1  is the polynomial transfer function of the room from



the input j to the output i. H zj ( )−1  is the FIR  compensator to be



applied to the j-th input. The problem thus becomes one of
finding the solution to a system of polynomial equations:
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where D T= [ ]1 1 1L , for the problem of inverse filtering.



By changing the vector D we might solve other problems such as
transmitting a signal only to one output.



In order to make use of standard results for polynomial matrices,
equation 1 is rewritten as:
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A necessary and sufficient condition for the existence of a
solution  to equation 2 is that every left greatest common divisor
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of G1 and G2  is a left divisor of D[4].  Now, consider the Bezout



identity for the polynomial matrices G1 and G2 :



I G W G W= +1 1 2 2 (3)



where I is the M x M identity matrix, W1  is a  M x M matrix, and



W2  is a  (N-M) x M matrix. If  a solution to the Bezout identity



exists, then we can form a solution to equation 2 by adding the
columns of W1  and W2  to form the vectors H1 and H2



respectively.  More generally, if a solution to equation 3 exists,
we can find the solution to equation 2 for any D, by right-
multiplication by W1  and W2 .



A polynomial solution to the Bezout identity exists if and only if
the two polynomial matrices G1 and G2  are mutually coprime,



i.e., the matrix G never drops rank[4].  Namely, the Bezout
identity admits a solution if and only if there exists two
unimodular matrices U and V such that



G USV= (4)



with S I M= 0 .  Equation 4 is called the Smith Canonical



form of G.



When this condition holds, a block Toeplitz time domain matrix,
formed of the impulse response measurements of each of the
transfer functions of the system, can be inverted in order to solve
for the appropriate filter coefficients, i.e. [1].  In this
equation, script variables are used to denote the time domain
counterparts of the matrices in equation 1.



It has been stated that coprimeness is usually achieved “except
for some symmetrical positions.”[1] As far as we know, nobody
has investigated the validity of this statement and its
implications in the context of practical realizations.   Strictly
speaking, we need to determine if the matrix  is full rank.  A
more appropriate question regards the condition number of the
matrix.   Due to noise inherent in measurements, the matrix will
likely be full rank, hence we are interested in cases where the
matrix exhibits near singular behavior.  As will be shown, this
will impact the numerical precision of the filters designed with
these methods.



This type of analysis involves the singular value decomposition
of a matrix.  Due to the high dimensionality of the time domain
matrix, it is impractical to do this directly.  In what follows, we
develop the relation between the condition number of the time
domain matrix and the transfer matrices evaluated over
frequency.  In this way, the analysis is reduced in dimension to a
set of N x M matrix decompositions.  Using these techniques,
the singular behavior is studied as the number of inputs and
outputs are varied.



3. NUMERICAL ANALYSIS



The condition number of a matrix is defined as the ratio of the
maximum and minimum singular values of a matrix.  In order to
determine  the condition number of the time domain matrix, we
must bound the singular values.  The maximum and minimum
singular values are defined as:



σ σmax minmax min= =
x xx
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where the norms used in the above equations are the Euclidean
or L2  norms.  Another way to state this is that given any vector,



we can form a bound on the maximum and minimum singular
values in the following manner:
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Consider a finite length time domain vector v, comprised of a
complex exponential with unitary Euclidean norm and
frequency f0 .  This can be used to construct a vector x f0



 in the



following manner:     
x v v vf n



T



0 1 2= α α α| | |L (7)



 In the above expression, the αi s’  represent a complex weight



applied to the vector v at each input of the system. We need to
consider the Euclidean norm of the vector y f0



 given by.



y xf f0 0
= (8)



We can transform this matrix equation to an equivalent equation
involving the transfer matrix, through multiplication by the DFT
matrix.  This operation preserves the Euclidean norm since the
DFT matrix is unitary.   After doing this, we have:



% % %Y GXf f0 0
= (9)



In the above expression %X f0
 is of the form:



% | | |X f n0
0 0 0 0 0 01 2= L L L L L L Lα α α (10)



Since each section of the vector x f0
 consists only of a single



frequency, all components of  %X f0
 are zero, except for those



elements corresponding to the frequency f0 .  Due to the sparse



nature of this vector, we simplify it to the equivalent, lower
dimensional problem:



Y G f Xf f0 00= ( )  (11)



where we consider only the nonzero elements of %X f0
 and %Yf0



,



and the corresponding columns in the matrix %G . This results in
the following:
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Hence, G is simply the transfer matrix evaluated at the
frequency f0 .  Note that the vectors X f0



 and x f0
 have the same



norm since they are related by the DFT which is unitary.



As stated previously, the condition number of the time domain
matrix is given by:
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where σ σmax min( ), ( )  are the maximum and minimum



singular values.  We can bound the numerator term in equation
13 as the maximum over both frequency and the α  values in
equation 7.
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The equality in equation 14 makes use of the fact that X f0
 and



x f0
 have the same lengths.  A similar relation can be derived for



the minimum singular value, which results in the following
bound for the condition number:
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 κ  can now be used to make a statement concerning the
numerical precision of the inverted matrix.  In practice, the time
domain matrix is constructed from impulse response
measurements determined through experimental means, and
hence exhibit finite numerical precision.  We can express the
inherent numerical error in the following manner.



$ ∆ (16)



where $  is the matrix of measured impulse responses,  is the
actual value, and ∆  is the error.  As stated in an earlier section,
the filters which are applied to the inputs of the multiple input
system are given by:



= $ (17)



We can express the relative error in  as[5]:



∆ ∆
≤ κ( ) , (18)



where  denotes the spectral norm of the matrix, which is



defined as its maximum singular value.  This can be interpreted
directly in terms of  bits of precision of the resultant filters,



# ( ) # ( ) log ( ( ))bits bits= − 2 κ (19)



ROOM: 1 2
x y z x y z



dimension 6 7.1 8.6 8 10 6
 Source1 7.0 .50 1.4 .93 .50 .97
Source2 7.0 .50 7.9 .93 .50 2.7
Source3 5.2 .50 1.4 6.9 .50 .97
Source4 5.2 .50 7.9 6.9 .50 2.7
Source5 .35 .50 4.3 .46 .50 3.0
Source6 3.0 .50 8.3 4.0 .50 5.7
Source7 3.0 .50 7.0 4.0 .50 .48
Source8 5.6 .50 4.3 7.5 .50 .19
Rcvr1 1.9 5.9 1.0 2.6 8.2 1.0
Rcvr2 4.0 5.9 1.0 5.4 8.2 1.0
Rcvr3 1.9 6.5 2.0 2.6 9.1 2.0
Rcvr4 4.0 6.5 2.0 5.4 9.1 2.0



Table 1: Room geometry and source / receiver locations for the
simulations (in meters).



4. SIMULATION



A. Description



In order to study the singular behavior of the transfer matrix,
simulations were performed using two rooms with rectangular
geometry.  Impulse responses were generated using the image
method [6].  For the purpose of this experiment, a sampling rate
of 1KHz was used, hence only low frequency behavior was
studied.  Each impulse response was calculated for a duration of
1 second.



Eight Sources and four receivers were used, and impulse
responses were generated for each of the 32 input output
combinations.  The room dimensions, and source / receiver
locations are shown in table 1.  The first room used the ratios
1:1.186:1.439 to determine the length width and height.  These
have been shown to be optimal in the sense that they minimize
the deviation of the modal distribution from the asymptotic
hyperbolic curve[7].  The second room used the ratios of 3:4:5.
Both rooms used reflection coefficients of .7 on all boundary
surfaces.  Sources and receivers were assumed to be
omnidirectional in nature.
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Figure 2: Plot of condition number versus number of inputs for
room 1.    The curves are for the cases of inverse filtering at 1
(’o’)  through 4 (’ * ’) outputs.



B. Results



Subsets of the 32 impulse responses were studied for each room
in order to examine the behavior of the system as inputs or
outputs were added.  For each of these subsets of data, a transfer
matrix was constructed, and its singular values were calculated
over a range of frequencies.  Equation 15 could then be used to
relate this data to the condition number of the corresponding
time domain matrix.



Figures 2 and 3 show the results for each of  2 rooms.  These
plots should be interpreted as the loss in numerical precision of
the filter coefficients, resulting from the inversion of the time
domain matrix.  This number can be expressed both in dB as
well as bits of precision.  For example, in room 2, we notice a
loss in precision of  approximately 18 dB or 3 bits when 4 inputs
are used with 1 output.  Hence, the resulting precision of the
compensation filters would be 3 bits less than that of the
measured impulse responses.



Not surprisingly, the condition number decreases, and hence
numerical performance is enhanced as the number of inputs is
increased.  Conversely, the condition number increases at the
rate of approximately 1 bit for each output added.  Both rooms
exhibited similar   in this respect.



5. CONCLUSION



Two rooms were studied in the context of inverse filtering using
multiple input techniques.  The analysis provides an estimate of
the loss in numerical precision of the compensation filters,
which occurs due to the inversion of a matrix.  It was shown that
the condition number of the time domain matrix is related to the
singular values of the transfer matrix evaluated over frequency.
This provides an efficient way to study the singularities of the



larger time domain matrix.  Furthermore, this study provides
insight into the level of benefit the inverse filtering operation
receives when the number of inputs is increased.
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Figure 3: Plot of condition number versus number of inputs for
room 2.  The curves are for the cases of inverse filtering at 1 ('o')
through 4 ('*') outputs.
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Abstract



In this paper we try to establish the system order for the correct representation of a set of



room transfer functions (RTF), in order to partition memory between the common recursive



part and the non-recursive part specialized for each RTF. To this end, we apply a few



system theory concepts on a set of simulated rectangular rooms, whose impulse responses



were generated using the image method [1]. A further validation of our results is provided



by an analysis of the frequency density of a comb-�lter modeling of the recursive part.



1 Introduction



Several models have been proposed in the literat-



ure for the representation of room transfer func-



tions. FIR �lters have been used for echo can-



cellation, especially using adaptive �ltering tech-



niques [2].



Recursive �lters are often used for arti�cial re-



verberation. These usually take the form of comb



and allpass �lters, and are often cascaded with



tapped delay lines [9, 6, 4, 8].



More recently, it has been proposed to model



the RTFs of a given room by a set of common



poles, provided by an IIR �lter, and an FIR part



which varies according to source and receiver po-



sitions within the room [3]. A similar approach



is taken in [8] for building arti�cial reverberators,



where the recursive part is implemented by means



of a feedback delay network (FDN), and the FIR



part is a tapped delay line. In this latter model,



the FIR part can be associated with the early re-



ections of the room, while the IIR part can be



interpreted as a representation of normal modes



and di�usion. This physical correspondence al-



lows one to control the �lter parameters in a nat-



ural way, and physical consistency is automatically



achieved.



An open question that we address in this pa-



per is that of the memory requirements necessary



for the correct representation of a set of RTFs of a



room. Furthermore, we address the issue of parti-



tioning this memory between the common recurs-



ive part and the non-recursive part, which is spe-



cialized for each RTF.



In our investigation, we apply system theoretic



concepts on a set of simulations we have conduc-



ted using the image method [1]. Since the image



method can be shown to converge to a correct rep-



resentation of normal modes [1], we believe that



it constitutes a useful tool for studying the room



response, even in the steady state. This is an ap-



proach which guarantees a large and controllable



dynamic range. This allows for a straightforward



and repeatable construction of reference rooms, as



opposed to actual measurements in actual rooms.



In another project, we used the same set of sim-



ulations for determining numerical conditions for



invertibility of RTFs [7].



2 Methodology



In this section we briey introduce the system the-



ory background which is needed for our investig-



ation. A thorough treatment of this material can



be found in [5].



The Hankel matrix of a single-input-single-



output system can be constructed fromm samples



of a simulated impulse response h(�):



Hh =



2
6664



h(0) h(1) : : : h(m
2
� 1)



h(1) h(2) : : : h(m
2
)



...
... : : :



...



h(m
2
� 1) h(m



2
) : : : h(m � 1)



3
7775
(1)



Given a linear system in its matrix representation



� =



�
A B



C D



�
(2)











Hh is the product of the Observability and Reach-



ability matrices [5]. Thus, a singular value de-



composition (SVD) of H gives information about



the dimensionality of a minimal realization of �,



which is equivalent to its reachable and observable



part, i.e., it gives the memory requirement of the



system. In particular, the matrix S of the singular



values has a form



S =



2
666666664



s1 0 : : : 0 0



0 s2
. . . 0 0



...
... : : :



...
...



0
... : : : sn 0



0 0 0
... 0



3
777777775



(3)



where n is the order of the reachable and observ-



able part, i.e. of the minimal realization.



In practice, using measured or simulated im-



pulse responses, the singular values si will never



go exactly to zero, corresponding to the fact that



an in�nite state space would be necessary to rep-



resent three-dimensional wave propagation in dis-



crete time. Nevertheless, we can plot the singular



values on a log scale (see �g. 1) and consider n



to be the abscissa corresponding to a reduction of,



say, 60dB in the singular values.



3 The Experiment



In �gure 1 we have depicted the singular values



of a simulated impulse response for a room with



edges 8m�10m�6m, with a sample rate of 1KHz.



A line has been drawn to interpolate the data from



the sample 20 to 480. We cut the spike in very-



low frequency, since we believe it is due to the fact



that the simulated impulse response has a strong



DC component. We see that the singular values



go down with a slope of about 0:26dB=sample,



thus indicating that about 231 memory cells are



needed to represent the RTF with an \accuracy of



60dB", and 369 memory cells are needed for 96dB



of accuracy.



It has to be noticed that, throughout our dis-



cussion, the accuracy of representation is meas-



ured directly in the space of singular values of the



impulse response to be modeled, rather than ac-



tually modeling the room and measuring a signal-



to-noise ratio. For instance, on the basis of the



example of �g. 1, we can say that, in principle,



there exists a discrete-time linear system having



369 state variables, which can reproduce the im-



pulse response h(�) within the 16 bits of accuracy.



Now, let's consider more than one impulse re-



sponse simultaneously, namely a system with r



inputs and one output. The product of the con-



trollability and reachability matrices now takes the
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Figure 1: Singular values for 1 input and 1 output



form of a block Hankel matrix:



Hbh =



2
6664
h(0) h(1) : : : h(m



2
� 1)



h(1) h(2) : : : h(m
2
)



...
... : : :
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h(m
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� 1) h(m



2
) : : : h(m � 1)



3
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where any h(�) is a 1 � r vector. We can still



perform a SVD on this matrix and compute the



memory requirements for a correct simultaneous



representation of the di�erent RTFs.



When a second input is added to the previous



one-input-one-output impulse response, we notice



that the slope of the singular values reduces to



about 0:2dB=sample (�g. 1), thus indicating that



about 300 memory cells are needed to represent



the RTFs with an \accuracy of 60dB", and about



480 memory cells are needed for 96dB of accuracy.
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Figure 2: Singular values for 2 inputs and 1 output



Given an accuracy of 60dB we have, for one



input and one output



M1 = 231 (5)



and, for two inputs and one output



M2 = 300 (6)











Let us assume that there is a common recursive



part Mr . Let's also assume that the non-recursive



parts are totally independent for di�erent inputs



or outputs. This means that, if in the one-input-



one-output case we have a non-recursive memory



requirement Mf , in the two-input-one-output case



the non-recursive memory requirement has to be



2Mf .



We come up with the equations



M1 = Mf +Mr = 231



M2 = 2Mf +Mr = 300
(7)



The system (7) can be solved and it provides



Mf = 69



Mr = 162
(8)



In other words, in a single RTF representation,



about 70% of the memory should be put on the



recursive part.



This simple memory allocation has been done



on the basis of a somewhat arbitrary assumption.



The same assumption has been taken in the past



with no formal justi�cation. We now try to justify



the presence of a common IIR part and of inde-



pendent FIR sections by considering a third RTF.



When taking an additional input and computing



the SVD on the respective Hankel matrix, we get



a slope of 0:17dB=sample in the singular values



(�g. 3), thus indicating that about 352 memory



cells are needed to represent the RTFs with an



\accuracy of 60dB", and about 564 memory cells



are needed for 96dB of accuracy.
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Figure 3: Singular values for 3 inputs and 1 output



If our model is correct, the system



M1 = Mf +Mr = 231



M2 = 3Mf +Mr = 352
(9)



shouldn't give a solution very di�erent from (8).



In fact, we get



Mf = 61



Mr = 170
(10)



so that about 73% of the memory should be put on



the recursive part. This is di�erent from the pre-



vious 70%, but the di�erence is compatible with



the tolerance of the line �tting and with the some-



how arbitrary choice of the lower and higher cuto�



frequencies for the linear interpolation.



Our calculations are very sensitive to the ac-



tual placement of sources and receiver. In par-



ticular, symmetric positions should be avoided,



since they break the assumption of independent



non-recursive transfer functions.



4 Physical considerations



The experimental evidence �ts well with the



memory splitting as determined by strictly phys-



ical considerations of the model [8].



In the cited model, the digital representation



of the recursive part of a RTF is essentially a su-



perimposition of recursive comb �lters. If g is the



attenuation coe�cient in the feedback loop of a



comb �lter, then the approximate bandwidth of one



of the resonances is



�f =



�
1� g1=n



�
Fs



2�
(11)



where Fs is the sampling rate. The coe�cient g



is related with the reectivity of the walls. Each



comb �lter in the model is associated with a har-



monic series of normal modes, and with a direc-



tion in space. Progressively shorter delay lines are



used for representing higher order modes so that,



asuming that the reectivity is kept constant, the



bandwidth (11) also increases.



The richness of the model increases as long



as an increasing number of directions in space



is considered. It is easy to compute the number



of memory cells needed for the case at hand, for



an increasing number of space directions (�g. 4).



It makes sense to stop the increase in the num-



ber of directions when the bandwith of a reson-



ance exceeds the mean distance among two ad-



jacent resonances. It is well known that in an



actual three-dimensional enclosure, this distance



decreases quadratically with frequency in a rect-



angular environment, hence at some point it will



be less than �f . From a simulation perspective,



it makes sense to try to reproduce the resonances



which are clearly separable, thus limiting the num-



ber of comb �lters to be used. As stated in [8], this



corresponds to �nding a limit to the number of dir-



ections in space where we are considering plane-



wave propagation.



If we approximate our room by sampling 8 dir-



ections in space, we �nd that the mean number of



resonances per Hz (i.e. the frequency density) is



about



fd = 0:27 (12)











0 10 20 30 40 50 60 70
100



200



300



400



500



600



700



800



900
Memory Requirement Vs Sampled Directions



Figure 4: Memory requirement for an increasing



number of sampled directions



The resonance bandwidth in low frequency ranges



from 1:8Hz to 4:3Hz. These values are very close



to the reciprocal of the frequency density (i.e. the



mean peak-to-peak distance) which is 3:7Hz.



The conclusion we can draw from these specu-



lations is that 8 is a good choice for the number of



sample directions, and that it is not worth going



much higher, since the resonance peaks would not



be resolvable. Now, from �g. 4 we can deduce the



memory occupation of these 8 comb �lters, which



is 270 memory cells. Somewhat surprisingly, this



number is close to the memory requirement for the



recursive part, as computed by means of the sin-



gular value decomposition of the Hankel matrix.



5 Conclusion



We have outlined two criteria for estimating the



memory requirements for a discrete-time model-



ing of room transfer functions. The �rst method



is based on the singular value decomposition of



Hankel and block Hankel matrices, while the



second method relies on the discrimination of res-



onance peaks in the frequency domain. Even



though these two criteria do not show an evident



relationship, we found that they provide similar es-



timates in a practical case. This result is a clear



evidence of the fact that any RTF can be split in



an FIR part and an IIR part, and that this latter



part is independent on the source or receiver po-



sition, being given by the common resonances of



the room. While this split of RTFs was assumed



in previous works, this investigation shows that it



is justi�ed by numerical results and it indicates a



couple of ways of setting the system dimensions.
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Abstract



Time Frequency representations (TFR) attempt to portray the time varying spectral
properties of  a signal.  Many varied TFRs have been presented in the literature.  In a
general sense, TFRs are a mapping of a one dimensional time signal to a two dimensional
domain, whose axes are given by time and frequency.  Of these, the Wigner distribution
(WD) serves as a theoretical framework for many TFRs, including the commonly used
spectrogram.  A large class of TFRs, including constant-Q representations can be derived
from the WD by a process of two dimensional smoothing.  In addition, the WD allows for
independent smoothing in both time and frequency, thus eliminating the tradeoff of time
resolution and frequency resolution inherent in methods such as the spectrogram.   This
paper attempts to summarize the derivation and properties of the Wigner distribution.  In
addition applications from the literature relevant to the fields of music and audio will be
reviewed.
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1.0 -  Introduction



TFRs provide the experimenter with a tool for the analysis of signals whose spectra exhibit
time varying behavior.  The most commonly employed  method is the spectrogram, which
is formed by computing the square magnitude of the short time Fourier Transform
(STFT).  There are many other TFRs.  Among these the Wigner Distribution holds a place
of distinction.  This is due to the fact that it provides a unifying theoretical approach to a
larger number of distributions.  It will be shown that many quadratic representations,
including the spectrogram can be generated from the Wigner distribution using two
dimensional convolution.



In addition to its theoretical significance, it also has practical merit.  Since all other
quadratic distributions can be derived through smoothing of the Wigner distribution, the
Wigner distribution exhibits the greatest time/frequency resolution.  An important aspect
of the Wigner distribution is the inherent tradeoff between time/frequency resolution and
bilinear interference terms.  This is done by smoothing.  Furthermore, smoothing can be
done in both time and frequency separately, thus it is able to decouple the time resolution
from the frequency resolution.  This is in contrast to the spectrogram whose
time/frequency resolution product is always equal to a constant.



This overview attempts to define the Wigner distribution and its place in the context of
other TFRs.  Section 2 presents an overview of the entire class of TFRs.  Section 3
summarizes properties assumed to be desirable for TFRs in many applications.  Section 4
derives the Wigner distribution in the context of local autocorrelation functions.  In this
section, properties of the Wigner distribution are derived.  The pseudo-Wigner and
smoothed Wigner distributions are also developed.  Section 5 presents a generalized class
of distributions defined by Cohen.  In addition the relationship between the Wigner
distribution and the spectrogram is explicitly derived.  Section 6 presents several examples
from the field of audio and music signal processing.
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2.0 - Taxonomy of Time Frequency Representations



Figure 2.1 depicts the relationship between the various classes of TFRs.  A good
reference, which provides a clear overview of the relationships between the various TFRs
is Hlawatsch and Bourdeaux-Bartles [Hlawatch92].  Most of the following discussion is
derived from there lucid description.



The first dichotomy of TFRs is between linear and quadratic representations.  As the name
implies, linear TFRs obey the property of linearity.  Specifically, if P t f P t fx x1 2



( , ) ( , ) &  



represent the general TFRs of the time signalsx t x t1 2( ) ( ) &  , the linearity property can be
summarized as follows:



P t f P t f P t fx x x x1 2 1 2+ = +( , ) ( , ) ( , ) . (2.1)



In the above expression P t fx x1 2+ ( , ) , represents the TFR of the sum of x t x t1 2( ) ( ) &  .  Of



the many representations that satisfy this property, the STFT and the Wavelet Transform
(WT) are the most prominent.



Quadratic TFRs do not satisfy the linearity property as stated above.  They are often said
to satisfy a property of quadratic superpostion [Hlawatsch92].  Using the notation
presented above this can be defined as:



%( ) ( ) ( )



( , ) ( , ) ( , )



( , ) ( , )



%



, ,



x t c x t c x t



P t f c P t f c P t f



c c P t f c c P t f



x x x



x x x x



≡ +



= +



+ + +∗ ∗



1 1 2 2



1



2



2



2



1 2 1 2



1 2



1 2 2 1
             (2.2)



The last two terms, c c P t f c c P t fx x x x1 2 1 21 2 2 1



∗ ∗+, ,( , ) ( , ) , are known as bilinear interference



terms.  They are present in all quadratic TFRs to varying degrees.  The presence of these
terms is of great concern since often these terms obscure the terms from each of the signal
distributions.  In signal models composed of large numbers of components, the complexity
of these interference terms increases quadratically.  Specifically, if a signal has N



components, then the there are 
N



N N
2



1 2








 = −( ) /  interference terms [Hlawatsch92].



The fact that these terms are present motivates the use of smoothing functions to reduce
the magnitude of these components.  It will be seen that these smoothing functions reduce
the interference terms at the expense of the time frequency resolution of the
representation.  This is a constant theme throughout the field of quadratic TFRs.



The first major split under the heading of quadratic TFRs is that of energetic versus
correlative representations.  Conceptually, energetic representations can be thought of as
being akin to power spectral density.  The TFR gives in some sense, the energy of the
signal as a function of time and frequency.  Correlative representations on the other hand
give signal correlation energy as a function of time and frequency lag.  This is a two
dimensional extension to the one dimensional autocorrelation which gives signal
correlation purely as a function of time lag.  Furthermore, the energetic representations
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and the correlative representations form a Fourier transform pair.  This is conceptually the
same as the power spectral density and the autocorrelation function forming a Fourier
transform pair.  In the case of the energetic and correlative representations, the transform
is a two dimensional transform.



As portrayed in Figure 2.1, the Wigner distribution (WD) stands as a prototype for all
energetic quadratic TFRs.  This result will be developed later.  Furthermore, all other
distributions can be derived from the WD by two dimensional smoothing.  The particular
form the smoothing kernel takes establishes the basis for the next categorical distinction
under the heading of energetic distributions.  If the WD is smoothed using time and
frequency shift invariant kernels then the resulting distribution is itself time and frequency
shift invariant.  This class of representations obtained is known as the Cohen class, or the
shift invariant representation.  Mathematically this can be expressed as follows:



%( ) ( ) ( , ) ( , )
%



x t x t t e P t f P t t f fj f
x x= − → = − −0



2
0 0



0π
(2.3)



Taxonomy of Time Frequency Representations



      



STFT
Wavelet Transform
Gabor Expansion



Energetic Correlative



Wigner Ambiguity
Function



’duals’



Cohen ClassAffine Class
(Shift Invariant)(Scale Invariant)



Shift / Scale Invariant



Time Frequency Representations



Figure 3.1 - Overview of the relationship between various time frequency
representations
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This class is known denoted as CE , for Cohen’s energetic class.  The Spectrogram is the
most common member of CE .



The Affine class of energetic TFRs is obtained by smoothing the WD with an affine kernel.
This is known as an affine transformation.  The resulting representation preserves time
scalings [Hlawatsch92].  This means that a doubling of the time scale of the signal results
in a doubling in the time scale, and a halving of the frequency scale of the TFR.
Specifically,



%( ) ( ) ( , ) ( , )
%



x t a x at P t f P at f ax x= → = . (2.4)



This class of signals is denoted by AE .  Constant-Q representations fall into this category.
A good example of this class is the Scalogram which is the energetic distribution
corresponding to the Wavelet transform in the same sense that the Spectrogram is related
to the short time Fourier transform.



The Cohen energetic and Affine energetic classes are not mutually exclusive sets.  This
means that it is possible to have a distribution that satisfies time scaling as well as being
both time and frequency shift invariant.  Hlawatsch and Bourdeaux-Bartles denote this
class by CA C AE E E= ∩ .  Furthermore it can be shown that any smoothing kernel which
satisfies this property has the form of a product kernel.  This means that



P t f CA fx E P( , ) ( , ) ( )∈ ⇔ =Ψ τ υ τυ . (2.5)



Despite the preservation of time scaling, this class of TFR is not of the constant-Q variety
since they do preserve frequency shifts.



As stated previously, the Correlative TFRs can be expressed as the two dimensional
Fourier transform of the energetic TFRs.  Specifically, the Fourier transform of the WD is
known as the Ambiguity function.  In this sense, the Ambiguity function can be thought of
as the prototype for all correlative representations.  By the two dimensional Fourier
convolution theorem it is seen that a smoothing of the WD corresponds to a two
dimensional multiplication in the correlative domain.  Thus, any correlative representation
can be derived from the ambiguity function by a pointwise multiplication.  Furthermore,
each of the energetic classes discussed earlier (CE  & AE ), have their duals in the
correlative domain.
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3.0 - Properties of Time Frequency Representations



Time frequency representations form a broad subject matter, with very little definition.
Many TFRs exist, with many varying properties.  Much of the literature relevant to
Wigner distributions, and TFRs in general, start with a general discourse on various
properties assumed to be desirable.  This is to establish a framework for the development
and definition of suitable members.  The following discussion will proceed upon similar
lines.   A summary of these properties are provided in Table 3.1.



The first property is that of real valuedness.  This is motivated by the desire to represent
the energy of the signal, which of course must be real valued.  Properties 2 and 3 deal with
shifts in either the time or frequency domains.



Properties 4 and 5 deal with the marginals of the distribution.  This is terminology taken
from the field of probability.  This language is maintained for historic reasons.  Much of
the development of time frequency representations was pioneered in the field of Quantum
Mechanics where physicists were dealing with probabilistic entities such as the position
and the momentum of a particle.  In signal processing, we are often dealing with
deterministic signals, but still use the original terminology.  The marginal properties state
that if we integrate with infinite limits over one of the variables (time or frequency), we
obtain a function of the other variable.  Furthermore, if we integrate with respect to
frequency we obtain a function representing the instantaneous energy as a function of
time.  This is often called the energy time curve.  Integrating over the time variable results
in a function of frequency which gives the energy present at that precise frequency.  This is
commonly referred to as the power spectral density.  Lastly, integration over the entire
frequency time plane results in a real valued scalar representing the total energy of the
signal.



Another desirable property is that the moments of the distribution in both time and
frequency yield physically meaningful quantities.  Specifically, the first moment with
respect to frequency can be thought of as the group delay of the signal.   Alternatively, the
first moment with respect to time can be thought of as the instantaneous frequency of the
signal.  These properties must be used carefully since in some contexts they are
meaningless.



The finite support property of the distributions states that if the signal is time limited then
the distribution should also be time limited.  This can be stated as follows:



x t t t t



P t f t t tx



( ) , [ , ]



( , ) , [ , ]



= ∈
⇒ = ∈



0



0
1 2



1 2 (3.1)



In the frequency domain, this is interpreted as the property that a TFR of a band limited
signal should also be limited to the same range of frequencies.  Specifically,



X f f f f



P t f f f fx



( ) , [ , ]



( , ) , [ , ]



= ∈
⇒ = ∈



0



0
1 2



1 2 (3.2)
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The next property describes the TFR of the output of a linear time invariant system.  This
property states that the TFR of the output of a system is the convolution in the time
variable of the TFR of the input signal and the TFR of the system impulse response.  Its
dual property is the multiplication property.  This states that a modulation of a signal by
another signal results in a TFR which is formed by the convolution of the TFR of the two
signals over the frequency variable.   These two properties are motivated by the fact that
we wish the TFRs to behave as intuitively as possible.



In summary, the above properties represent a set of desirable properties with which to
analyze TFRs.  In addition, they provide a framework for the remainder of the discussion
and the development of the Wigner distribution.











7



• Real Valued (Energy) 
P t f P t fx x( , ) ( , )= ∗



• Time Shift Invariant
x x t



P t f P t fx x



τ τ
τ



τ



≡ −
⇒ = −



( )



( , ) ( , )



• Frequency Shift Invariant (Modulation)
x x t e



P t f P t f f



f
j f t



x x o



o



o



fo



≡



⇒ = −



( )



( , ) ( , )



2π



• Marginal Properties



Time: P t f dt X fx



t
∫ =( , ) ( )



2



Frequency: P t f df x tx



f
∫ =( , ) ( )



2



• Moments



Instantaneous Frequency: fP t f df tx



f
∫ =( , ) ( )φ



Group Delay: tP t f dt fx



t
∫ =( , ) ( )∆



• Finite Support



Time Limited signal:
x t t t t



P t f t t tx



( ) , [ , ]



( , ) , [ , ]



= ∉
⇒ = ∉



0 1 2



0 1 2
Band Limited Signal:



X f f f f



P t f f f fx



( ) , [ , ]



( , ) , [ , ]



= ∉
⇒ = ∉



0 1 2



0 1 2
• Convolution



~ ( ) ( )



( , ) ( , ) ( , )~



x h t x d



P t f P t f P f dx h x



≡ −



⇒ = −



∫



∫



τ τ τ



τ τ τ
τ



τ



• Multiplication
~ ( ) ( )



( , ) ( , ) ( , )~



x h t x t



P t f P t f f P t f dfx h x



≡



⇒ = − ′ ′ ′∫
τ



• Scaling
$( ) ( )



( , ) ( , )
$



x t ax at



P t f P at f ax x



=
⇒ =



Table 3.1 - Desirable properties for time / frequency distributions
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4.0 - Wigner Distribution



As stated before there are many ways to create time frequency representations which may
or may not exhibit some of the properties previously discussed.  One of these that proves
to be of both theoretical and practical importance is the Wigner Distribution.  The Wigner
distribution is defined as



W t f x t x t e dx
j f( , ) ( ) ( )= + −



=−∞



+∞
∗ −∫ τ τ τ



τ



π τ2 2 2 (4.1)



This definition in and of itself provides little intuition into the Wigner distribution.  A
development provided by Cohen [Cohen89] describes a development based upon the
concept of local autocorrelation.



The local autocorrelation concept is a generalization of the relationship exhibited by the
power spectral density and the standard autocorrelation function.  The  PSD and the
autocorrelation function are Fourier transform pairs.  This is summarized mathematically
as:



S f X f R R e dx x x
j f( ) ( ) { ( )} ( )= = =



−∞



+∞
−∫2 2τ τ τπ τ (4.2)



where:
S fx ( )  - Power Spectral Density of x t( )



R x t x t dtx ( ) ( ) ( )τ τ= +∗



−∞



+∞



∫   - Autocorrelation of x t( )



This results in S fx ( ) , which is purely a function of frequency.  To construct a TFR, we
desire a result which is both a function of time and frequency.  Following along these lines
the local autocorrelation function is developed.  This function is denoted by R tx ( , )τ , to
denote explicitly that it is a function of both time (t) and time lag (τ).  In this sense, we
could define a TFR as the Fourier transform (with respect to τ) of this local
autocorrelation, i.e.



P t f R t R t e dx x x
j f( , ) { ( , )} ( , )= =



−∞



+∞
−∫τ τ τπ τ2 (4.3)



This clearly would lead to a TFR whose properties were dependent upon the particular
choice for the local autocorrelation function.  The most straightforward form for R tx ( , )τ ,
is results is the Rihaczek distribution.  In this formulation, the local autocorrelation
function is given by



R t x t x tx ( , ) ( ) ( )τ τ= +∗
. (4.4)



This results in the following definition of the Rihaczek distribution.
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P t f R t x t x t e dx x
j f( , ) { ( , )} ( ) ( )= = +∗



−∞



+∞
−∫τ τ τπ τ2 (4.5)



This distribution is clearly not real valued.  This can be seen by examining the term
R t x t x tx ( , ) ( ) ( )τ τ= +∗ .  For the resulting Fourier transform to be real, R tx ( , )τ  must
exhibit Hermetian symmetry in the variable  τ.   This is not the case since in general



R t x t x t R t x t x tx x( , ) ( ) ( ) ( , ) ( ) ( )0 0 0 0 0 0+ = + ≠ − = −∗ ∗ ∗τ τ τ τ (4.6)



This is in violation of the first desirable property expressed in Table 3.1.



The following symmetric definition results in a local autocorrelation function which
exhibits Hermetian symmetry in the time lag variable τ.



R t x t x tx ( , ) ( ) ( )τ τ τ= + −∗2 2 (4.7)



The Fourier Transform of this with respect to τ will be a real valued function since



R t R t



x t x t x t x t



x x( , ) ( , )



( ) ( ) ( ) ( )



τ τ
τ τ τ τ



= −
+ − = − +



∗



∗ ∗



             since:



2 2 2 2 (4.8)



Using this definition of the local autocorrelation function, the definition of the Wigner
Distribution is obtained.



W t f x t x t e dx
j f( , ) ( ) ( )= + −



−∞



+∞
∗ −∫ τ τ τπ τ2 2 2 (4.9)



This definition can be extended for cross distributions.  In this case the cross Wigner
distribution would be given by:



W t f x t y t e dx y
j f



, ( , ) ( ) ( )= + −
−∞



+∞
∗ −∫ τ τ τπ τ2 2 2 (4.10)



In a similar manner, the Wigner distribution of the spectral functions X(f) and Y(f), can be
defined as



W f t X f Y f e dX Y
j t



, ( , ) ( ) ( )= + −
−∞



+∞
∗ +∫ ξ ξ ξπξ2 2 2 (4.11)



The corresponding auto Wigner distribution corresponding to this definition would be



W f t X f X f e dX
j t( , ) ( ) ( )= + −



−∞



+∞
∗ +∫ ξ ξ ξπξ2 2 2 (4.12)



An immediate result of the above definitions is that



W f t W t fX Y x y, ,( , ) ( , )= (4.13)
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In summary, the Wigner distribution is defined as the Fourier transform of a suitably
defined local autocorrelation function.  A local autocorrelation function attempts to define
the time dependent correlation behavior of the signal.  Many definitions are possible.  The
definition used in the WD is given in equation 4.7.  This is a Hermetian function, thus
ensuring a real valued Wigner distribution.



Property Wigner
Distribution



Pseudo-WD smoothed-
WD



Spectrogram



Real Valued WD PWD SWD SPEC



Time Shift
Invariant



WD PWD SWD SPEC



Freq.  Shift
Invariant



WD PWD SWD SPEC



Time
Marginal



WD PWD



Freq.
Marginal



WD



Finite Time
Support



WD PWD



Finite Freq.
Support



WD



Table 4.1 - Comparison of several time frequency representations



4.1 - Properties of the Wigner Distribution



Claasen and Mecklenbräuker provide an excellent overview of the properties of the
Wigner distribution [Claasen80 (Part1)].  Table 4.1 provides a list of properties along with
the TFRs that satisfy each.  Much of the discussion provided herein is developed along the
lines presented by Claasen and Mecklenbräuker.
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Real Valued



As mentioned previously, the Wigner distribution is real valued for any signal x(t).  More
generally, this can be stated for the case of the cross Wigner distribution as



W t f W t fx y y x, ,( , ) ( , )= ∗
, (4.14)



with a special case being



W t f W t fx x( , ) ( , )= ∗
, (4.15)



which implies that W t fx ( , ) must be real valued.



Time/Frequency Shift



The next properties to be discussed are the time and frequency shift properties.  The time
shift property is developed as follows:



x t x t t



W t f x t x t e d



x t t x t t e d



W t t f



t



x t
j f



j f



x



t t



t



0



0 0 0



0



0



2



0 0
2



0



2 2



2 2



( ) ( )



( , ) ( ) ( )



( ) ( )



( , )



= −



= + −



= − + − −



= −



−∞



+∞
∗ −



−∞



+∞
∗ −



∫



∫



∆



τ τ τ



τ τ τ



π τ



π τ               



               



(4.16)



The frequency shift, or modulation property is derived as follows:



x t x t e



W t f x t x t e d



x t e x t e e d



x t x t e d



W t f f



f
j f



x f
j f



j f t j f t j f



j f f



x



f f



0



0



0 0 0



0 0



0



2



2



2 2 2 2 2



2



0



2 2



2 2



2 2



( ) ( )



( , ) ( ) ( )



( ) ( )



( ) ( )



( , )



( ) ( )



( )



=



= + −



= + −



= + −



= −



+



−∞



+∞
∗ −



−∞



+∞
− ∗ + −



−∞



+∞
∗ − −



∫



∫



∫



∆
π τ



π τ



π τ π τ π τ



π τ



τ τ τ



τ τ τ



τ τ τ



               



                              



              



Quadratic Superposition



As stated earlier, quadratic TFRs do not satisfy a linearity property, but instead satisfy a
quadratic or a bilinear superposition property.  Specifically in the case of the Wigner
distribution:



W t f W t f W t f W t fx x x x x x1 2 1 2 1 2
2+ = + +( , ) ( , ) ( , ) Re{ ( , )}, (4.18)
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The last term, namely2
1 2



Re{ ( , )},W t fx x , is the interference term.  In general there will be



N
N N



2
1 2











 = −( ) /  terms for the distribution W t fx xN1 + +L ( , ).



Properties of the Marginals



The marginals are obtained by integrating W t fx y, ( , ) over t, or f .  The following derivation



obtains several important properties.



x t y t W t f



x t y t W t f e d



x y



x y
j f



( ) ( ) { ( , )}



( ) ( ) ( , )



,



,



+ − =



⇒ + − =



∗ −



∗



−∞



+∞
−∫



τ τ



τ τ τπ τ



2 2



2 2



1



2 (4.19)



By a change of variables,



Let t t



t t



t
t t



t t



x t y t W
t t



f e dx y
j ft t



:



;



( ) ( ) ( , ),



   



          



          



1



2



1 2
1 2



1 2
1 2 2



2



2



2



2
1 2



= +
= −



⇒ = + = −



⇒ = +∗



−∞



+∞
− −∫



τ
τ



τ



τπ



(4.20)



This relation bears important results for the following special cases:



A. Standard Marginal Property



Let t t t



x t y t W t f df



x t x t W t f df x t



x y



x



:



( ) ( ) ( , )



( ) ( ) ( , ) ( )



,



     1 2



2



= =



⇒ =



⇒ = =



∗



−∞



+∞



∗



−∞



+∞



∫



∫



(4.20)



The last line states that the one dimensional infinite integral of the Wigner distribution



over the frequency variable yields the quantityx t( )
2
, which gives the instantaneous energy



as a function of time.  This is known as the energy time curve.  This is similar to obtaining
a marginal probability density function of one variable by integrating the joint probability
density function over the other variable.



B. Re-synthesis of the time signal from the distribution
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(4.21)



This states that the original signal can be recovered within a multiplicative constant from
the distribution by the integration given in equation 4.21.



The last property is derived by integrating the result of equation 4.20 with respect to the
time variable.  Doing this yields:
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(4.22)



This states that a double integration over the entire time frequency plane results in the
total energy of the signal x(t).



By a similar development the frequency marginals can be derived.  The derivations will be
omitted since they are exactly as for the time marginals presented above.  The results are
stated as follows:
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(4.23)



Finite Support Property



The finite time support property can be seen to result from the fact that if
x t t t t( ) , [ , ]= ∉0 1 2 , then either x t( )+ τ 2  or x t( )− τ 2  will be zero for any value of
t t t∉[ , ]1 2 .  Since either one or the other of these terms will be zero the Wigner integral
will be identically zero, hence the finite time support property can be stated as:
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1 2 (4.24)
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Similarly the finite frequency support property states that for any band limited signal x(t),
the corresponding Wigner distribution is zero for frequencies outside the bandwidth of the
signal.  This can be derived along the same lines by examining the spectral Wigner
distribution definition given in equation 4.11.  The same argument holds as stated above.
The final step is to realize that  W f t W t fX Y x y, ,( , ) ( , )= .  Specifically, the finite frequency



support property states that:



X f f f f



W t f f f fx



( ) , [ , ]



( , ) , [ , ]
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⇒ = ∉



0



0
1 2



1 2 (4.25)



Linear Operations



The next set of properties deals with the affect of linear manipulations of the signal upon
the corresponding Wigner distribution.



A. Time Filtering (Convolution Theorem)



The result of filtering a signal x(t) by a filter with impulse response h(t), is given by the
following theorem:
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τ τ
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(4.26)



This result can be summarized that a filtering of a signal in time results in a convolution of
the corresponding distribution in time, and a multiplication in frequency.  The dual result is
presented next.



B. Modulation Theorem
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(4.27)



4.2 - Examples



To illustrate the Wigner distribution, several examples will be developed.  It has been
noted that in practice, the Wigner distribution suffers from severe interference terms.
These examples have been chosen to illustrate this.  In practice it is often useful to use an
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analytic signal, to get rid of the interference terms present from the positive and negative
frequency components in a real valued signal.



Complex Exponential



The following derivation is for the Wigner distribution of a complex exponential signal.
The resulting distribution is plotted in Figure 4.1.  The distribution portrayed in figures
4.1-4.4 were calculated using a discrete version of the Pseudo-Wigner Distribution
(PWD), which is discussed in a future section.
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(4.28)



This is seen to be a delta function in the plane at a constant frequency of f0 , as would be
expected.



Real Valued Cosine



The next example shows clearly the interference terms present in the distribution.  To
derive the Wigner distribution the quadratic superposition property will be used.  To use
this we will think of the cosine as a sum of two complex exponentials. We will get two
terms from each of the complex exponentials and a third term equal to twice the real
component of the cross distribution between the two exponentials.
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(4.29)



The interference term is seen to be equidistant between the two terms.  It is oscillatory in
the time dimension at a frequency twice the frequency of the signal x(t).  Figure 4.2
depicts the results.



Chirp - Analytic



The next example depicts a distribution whose underlying signal has an instantaneous
frequency that is not constant over time.  A chirp signal has an instantaneous frequency
which is linearly proportional to time.
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(4.30)



The results of this example are plotted is figure 4.3.  The distribution is seen to be a delta
function, at a slope of ’a’ in the time frequency plane.  The slope is the sweep rate of the
chirp signal.



Figure 4.4 shows the distribution of a real valued chirp signal given by x t at( ) cos( )= π 2 .
This analysis is similar to that of the cosine example.  The interference terms are seen to be
located at D.C., with an oscillatory behavior in time.
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4.3 - Time-Windowing: The Pseudo Wigner Distribution



For practical reasons the signal needs to be windowed in time previous to any analysis.
When this is done, the resulting distribution is known as the Pseudo-Wigner Distribution
[Claasen80 (Part3)].  In order to develop this concept, a windowed version of the signal is
used.  We define:
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∆
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where    (4.31)



In this case x(τ) is the signal, xt(τ) is the windowed and shifted version of x(τ).  Taking the
Wigner distribution of xt(τ) results in the following family of Wigner distributions.
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(4.32)



Equation 4.32 was derived using the modulation property stated previously.  This can be
thought of as a two dimensional smoothing of the distribution of the signal  x(τ).  This
result represents a separate Wigner distribution for each value of the parameter t, which
represents the window position.  In order to limit the analysis to only those windows
centered at time  τ, the parameter t, is set equal to τ, which results in the following
definition of the Pseudo-Wigner distribution.
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0 (4.33)



The above expression is seen to be a time independent smoothing over the frequency
variable only.  This result implies that no time resolution is sacrificed.  Furthermore, for a
real window, we have the following.



H f W f w e d ww
j f( ) ( , ) ( ) { ( )}= = =−
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∫0 2 22 2 2τ τ τπ τ



(4.34)



Hence the distribution undergoes a convolution in the frequency variable by a function
which is the Fourier transform of the window.  This is a lowpass operation since the
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convolution is equivalent to a multiplication by a time limited function in the Fourier
domain.



Figure 4.3 - Wigner Distribution for an analytic chirp.
Sampling rate = 10 KHz,  frequency = 2 KHz.  (Hanning Window)



Figure 4.4 - Wigner Distribution for real chirp signal showing the oscillatory
interference terms present at DC.  Sampling rate = 10 KHz,  freq. = 2 KHz.
(Hanning Window)
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Figure 4.1 - Wigner Distribution for a complex exponential.
Sampling rate = 10 KHz,  frequency = 3.5 KHz.  (Hanning  Window)



Figure 4.2 - Wigner Distribution for a real sinusoid showing the oscillatory
interference terms present at DC.   (Hanning Window)
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5.0 - Generalization of the Wigner Distribution: Cohen’s Class



In 1966, Cohen published a generalized class of time frequency distributions[Cohen66].
From this general form an infinite number of TFRs can be generated.  Furthermore, the
Wigner distribution is seen to be the most basic distribution to come out of the definition.
Cohen’s class is defined as:



C t f e x u x u dud dx
j t f u



u



( , : ) ( , ) ( ) ( )( )Φ Φ
∆
= + −− − ∗∫∫∫ 2 2 2π ξ τ ξ



τξ



ξ τ τ τ τ ξ (5.1)



Φ( , )ξ τ  is the kernel of the distribution.  This class of TFRs is often notated by CE , for
Cohen’s energetic class.  This refers to the fact that this is in general a quadratic form
which represents the energy distribution of the signal.  Different choices for the kernel
result in different distribution functions with different properties.  In order to gain insight
into the above expression , some manipulation is necessary.



It has already been stated that the Ambiguity function is the two-dimensional Fourier
transform of the Wigner distribution.  The Ambiguity function is defined by:
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2 2 2  (5.2)



This is the Fourier transform of the local autocorrelation function mentioned earlier with
respect to the time variable instead of the ’time-lag’ variable as in the case of the Wigner
distribution.  Using this definition in equation 5.1, we have the following simplification.
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In this form it is seen that Cohen’s class of TFRs can be thought of as the two dimensional
Fourier transform of the product Ax ( , ) ( , )ξ τ ξ τΦ .  From the convolution theorem of
Fourier transforms, this can be expressed as the two dimensional convolution of the
transforms of each of the terms in the product.  Using this results in the following
expression for Cohen’s class of time frequency distributions.



C t f t f W d dx x( , : ) ( , ) ( , )Φ
∆
= − −∫∫ ϕ τ ξ τ ξ τ ξ



τξ



(5.4)



Where ϕ( , )t f  is the Fourier transform of the kernel Φ( , )ξ τ , and Wx ( , )τ ξ  is the Wigner
distribution which is the transform of Ax ( , )ξ τ , the ambiguity function.



Equation 5.4 states that any member of Cohen’s class of time frequency representations
can be generated from the Wigner distribution by smoothing.  Furthermore, the smoothing
function is the Fourier transform of the distribution kernel.  In the case of the kernel
function equal to unity,  we have the following:



ϕ τ ξ ξ τ δ ξ δ τ( , ) ( , ) ( ) ( )= Φ 1 (5.5)
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Using this in equation 5.4, results in:



C t f t f W d d W t fx x x( , : ) ( ) ( ) ( , ) ( , )Φ = = − − =∫∫1 δ τ δ ξ τ ξ τ ξ
τξ



(5.6)



This results in an alternate notation and definition  for the Wigner distribution.
Specifically,
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The definition  in equation 5.7 simplifies to the definition given earlier in equation 4.1.



5.1 - Smoothing of the Wigner Distribution



As stated in the previous section, all members of  CE  can be generated from the Wigner
distribution by an appropriate smoothing.  It was shown that a kernel equal to unity
resulted in no smoothing, which in turn resulted in the Wigner distribution itself.  In this
framework, we can revisit the pseudo-Wigner distribution.  This distribution is given by a
smoothing only over the frequency variable.  Specifically,



PWD t f W t W f dx x w( , ) ( , ) ( , )= −
−∞
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∫ ξ ξ ξ0 (5.8)



This corresponds to a smoothing function ϕ( , ) ( , )t f W fw= 0 , the Wigner distribution of
the window function evaluated at t = 0.  The kernel is the two-dimensional Fourier
transform which would be related to the ambiguity function of the time window.



A more general result is known as the smoothed pseudo-Wigner distribution.  The
definition of this distribution is:



SPWD t f f t G f W d dx x( , ) ( ) ( ) ( , )= − −∫∫
∆



τ ξ τ ξ τ ξ
τξ



(5.9)



The important aspect of this distribution is that the smoothing kernel is defined in
separable product form.  The time smoothing function is independent of the frequency
smoothing function.  This allows one to achieve an arbitrary time/frequency resolution
(∆ ∆t f, ).



Another important and very common representation that can be derived from the Wigner
distribution is the spectrogram.  The spectrogram is defined as the magnitude squared of
the short time Fourier transform.  This is summarized as follows.
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Using the fact that X f W t f dtx( ) ( , )
2 =
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∫  (property XX), the spectrogram can be



expressed as
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In the above expression W t fxt
( , )  is the Wigner distribution of the windowed time series.



Using equation 4.32, this can be expanded to yield:



SPEC t f W W t f d dx x w( , ) ( , ) ( , )= − −∫∫ τ ξ τ ξ τ ξ
τξ



(5.12)



Hence the spectrogram can be generated from the Wigner distribution by a two
dimensional smoothing.  The smoothing kernel is the time flip of the Wigner distribution
of the window function.



ϕ τ ξ τ ξ( , ) ( , )= −Ww (5.13)



5.2 - Discussion



In the last section it was shown that the pseudo Wigner distribution, the smoothed Wigner
distribution, and the spectrogram can be obtained from the Wigner distribution by
appropriate application of smoothing kernels.  It is useful to compare these three derived
distributions.  A table listing the properties of the Wigner distribution as compared to the
properties of the three derived distributions is given in Table 3.2.  Figure 5.1 describes the
various time/frequency resolutions available from each of the distributions.



Pseudo-Wigner Distribution



The pseudo Wigner distribution is derived from the Wigner distribution by a smoothing in
frequency only.  This means that the time resolution is not disturbed.  Furthermore, the
resulting frequency resolution is arbitrary, and is a result of the time window used.  This
result is described in figure 5.1b.  Referring to Table 3.2, the PWD has most of the
properties of the general Wigner Distribution.  The properties lacking are finite frequency
support, frequency marginals and group delay.  These properties are lacking since there
will always be some frequency smoothing present, and these quantities result in values
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which are averaged over the window.  The distribution still has finite time support and
integration over all frequency results in the correct time marginal.



Smoothed Wigner Distribution



Figure 5.1c shows that the smoothed Wigner distribution is capable of arbitrary
time/frequency resolution.  As stated previously, this is due to the separability of the
smoothing kernel.  Using appropriate smoothing functions in time and frequency, any
resolution can be obtained.  The specific properties of this distribution depends upon the
particular choices for the smoothing functions.  In general the smoothed Wigner
distribution has properties similar to those of the spectrogram since it too undergoes
smoothing in both time and frequency.  The smoothed Wigner distribution does not exhibit
the properties of finite time and frequency support.  In addition, it fails the first moment
properties (instantaneous frequency and group delay).  Instead, it yields an average taken
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Figure 5.1a-d - Time / frequency resolution plots for the Wigner distribution
and some smoothed versions. (a) Wigner distribution  (b) Pseudo-Wigner



distribution (c) smoothed Wigner distribution (d) Spectrogram
(Adapted from Hlawatsch and Bourdeax-Bartles [Hlawatsch92] )
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over the duration of the smoothing window.  It also fails to provide marginals, but again
provides an averaged value.



Spectrogram



The spectrogram’s locus of possible time/frequency resolutions is given in Figure 5.1d.
This curve is characterized by the fact that time/frequency resolution product equals a
constant (∆ ∆t f K= ).  This limits the possible time frequency resolutions to a hyperbola.
Furthermore, this results in a tradeoff between time and frequency resolution.  Practically
speaking, this is due to the fact that increasing the window length increases the frequency
resolution, while decreasing the time resolution.  This is in contrast to the smoothed
Wigner distribution which can adjust time and frequency resolution separately.  In the case
of the pseudo-Wigner distribution, increasing the window length increases the frequency
resolution, but time resolution does not suffer.
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6.0 - Applications of the Wigner Distribution



6.1 - Time Delay Spectrometry



Time delay spectrometry (TDS) is an audio measurement technique pioneered by Heyser
in 1967 [Heyser67].  It utilizes linearly swept frequency signals to obtain the frequency
response of  the system under test.  Tracking bandpass filters are used to separate out
components of multipath reflections.  Through a number of measurements the
experimenter is able to build of a series of frequency responses for each of the multipath
components of the system.  Applications for this technique include measurement of
loudspeakers responses in reverberant and noisy environments.  This relies on the ability to
have the bandpass filter track at the precise frequency corresponding to the received direct
sound.  Other applications include measurements of the response of individual reflecting
surfaces.  In addition, time frequency representations of entire rooms can be built up using
this method.  It is emphasized that this experimental method employs only time domain
methods to generate entire time frequency representations.



More recent work has analyzed the technique originally developed by Heyser
[Vanderkooy96, Poletti88].  Verschuur et al, have stated that the TDS technique can be
shown to be equivalent to a spectrogram [Verschuur88].  Poletti has used the Wigner
distribution to provide insight into TDS.  The description provided by Poletti is similar in
scope to the discussion provided by Claasen and Mecklenbräuker on the topic of
spectrum analysis using chirp signals [Claasen80 (Part3)].



Linearly swept frequency measurement techniques are based upon the application of a
chirp signal to a system.  This can be expressed as:
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where:  impulse responseof system



         chirp signal with sweep  (6.1)



An approximate technique to determine the frequency response of the system under test is
to simply rectify and filter the received signal r(t), in order to determine the signal
envelope.  If the sweep rate of the applied chirp is low enough then this would serve as a
good approximation to the actual frequency response.  This technique is discussed as the
basis for common commercial spectrum analyzers by Claasen and Mecklenbräuker.



An improvement on this technique involved the uses of a separate chirp signal to provide
synchronous demodulation of the signal r(t).  Subsequent to the demodulation the
resulting signal is low pass filtered.  Figure 6.1 provides a pictorial description of this
process.  In this method, the output of the lowpass filter served as an estimate of the signal
power in the frequency band centered at the instantaneous frequency of the demodulating
chirp signal.  Since the chirp signal generates an instantaneous frequency linearly
proportional to time, the time domain output of the filter can be interpreted as the
approximate frequency response of the system.
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system



X



Demodulation



chirp 



chirp LPF H(at)  (approx)



Figure 6.1 - Approximate method of determining frequency response using
chirp signals [Poleti88].



A third improvement discussed by Poletti involves a final application of another chirp
signal.  In order to understand the basis for this, an interpretation based on the Wigner
distribution was presented.   Figure 4.3 depicts the Wigner distribution of an analytic chirp
signal.  As derived in equation 4.30, the chirp signal has a Wigner distribution of the form



W t f f atchirp ( , ) ( )= −δ , (6.2)



where a is the sweep rate relating time and frequency.  Using the time convolution
property, along with this result for the distribution of a chirp, the Wigner distribution of
r(t) in equation 6.1 can be derived.
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(6.3)



This can be expressed as a co-ordinate transformation corresponding to the matrix
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This transformation skews the time frequency plane around the line defined by f = at.



A similar result can be obtained by applying a chirp multiplicatively.  In this case, the
following result is obtained.
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This corresponds to the following transformation matrix.
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Using these two transformation matrices, any general co-ordinate transformation can be
obtained by subsequent application.  Specifically, three operations must be used, with an
alternation between convolution and multiplication.  This leads to the result that a general
co-ordinate transformation of the Wigner distribution of a system can be achieved by the
following two sets of operations:



1



2



1
2 2



2
2



1
2 2



2
2



) ( ( ) )



) ( ( ) )



    



        



h t e e e



h t e e e



j a t j bt j a t



j b t j at j b t



∗ ∗



∗



π π π



π π π
(6.7)



In real life situations we must limit ourselves to (1), since the first operation is the
convolution operation, representing the application of the chirp signal to the system.



The motivating factor for this discussion is the use of time domain techniques to determine
the frequency response of a system.  In order to do this, we desire a 90 degree rotation of
the time frequency plane.  This is equivalent to the Wigner distribution of the Fourier
transform of h(t), expressed as a function of time-H(t).



Poletti provided useful pictorial descriptions of the transformations employed in this three
stage rotation process.  An adaptation of these diagrams is presented in figures 6.2-6.5.
The first diagram shows the time-frequency response of a general system.  Figure 6.3
depicts the result of the application of the chirp signal.  The time frequency plane is
skewed in the time variable about the line defined by the sweep rate of the chirp signal.
The second transformation applied by the synchronous demodulation results in a skew in
the frequency variable.  The third operation finishes the 90 degree rotation.  The time
output is H(kt), the Fourier transform of h(t), evaluated as a function of time.



The last point to make of this discussion is the illustration of the effect of a delay
operation on the second chirp signal used for demodulation. In his original work Heyser
promoted the model of the impulse response of an  acoustic environment as a summation
of the individual impulse responses from each of its multipath components.  In fact, an
important application of TDS was to probe the response for each of the multipath
components.  Specifically, Heyser stated that the time and frequency representations of a
room could be stated by the following summations:
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The key point is that the delay in the time domain results in a frequency offset.  A time
delay of the demodulating chirp results in the following:











28



r t h t e e e



K H at e



j at j a t t j a t t



i
i



N
j a t t



n n



i n



( ) ( ( ) )



( )



( ) ( )



( )



= ∗ ∗



=



− − +



=



− −∑



π π π



π



2 2
2



2



1



      



  (6.9)



If this signal is low pass filtered, then the multipath component corresponding to the delay
of ti  will be successfully separated out of the combined response.
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Figures 6.2 - 6.5 depict the 90 degree rotation of the time/frequency plane which
takes place through the successive application of 3 chirp signals.  This results in a
linear mapping of the frequency axis to the time axis, hence the output is the
frequency response as a function of time. [Poleti88]



6.2 - Application to Loudspeakers



Janse and Kaizer published an excellent paper describing the application of the Wigner
distribution to the measurement of high quality loudspeakers [Janse83].  In addition to
providing a novel application this reference serves as a concise overview of the Wigner
distribution and its properties.  Furthermore, a flowchart for a discrete time pseudo
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Wigner distribution was provided.  This algorithm was implemented in Matlab, and is
included in the appendix.



Several problems common to speaker design were successfully examined by use of the
Wigner distribution.  These included an underdamped situation, a frequency dependent
group delay and unwanted reflection and diffraction from the transducer or cabinet.  The
underdamped speaker cone displayed ears extending in time, at frequencies other than the
expected cutoff frequency.  These ears were the result of slowly dying modes, resulting
from a lack of speaker damping.  In their paper, Janse and Kaizer stated that the affects of
these slowly dying modes were also evident in the transfer function of the loudspeaker, but
were more evident in the Wigner distribution.



A separate example was that of the group delay of the speakers.  A group delay which
varies as a function of frequency can be interpreted as the acoustic center of the speaker
taking on a  frequency dependent virtual location.   The Wigner distribution was also seen
to be useful in electrically aligning the acoustical centers of a woofer and a tweeter in a
multicomponent system.



A third example was given which used the Wigner distribution to detect unwanted
reflections in the time domain, due to incorrect mounting of components.  This diffraction
was quite obvious in the time frequency plane.



Janse and Kaizer performed all their experiments in an anechoic environment.  Verschuur
et al presented results from experiments in a reverberant environment [Verschuur88].  In
this set of experiments  A simulated room was used to study the appropriate application of
the Wigner distribution to an analysis of speaker/room characteristics.



In their study, three techniques were evaluated.  The first of these was the direct
application of the pseudo Wigner distribution.  This method suffered greatly due to the
great number of interference components present.  It was hence seen to be of little use in
the context of their work.



The second method was termed the align-and-average method.   This method was
attributed to Mecklenbräuker.  In this technique, a number of responses were acquired by
moving a microphone over a spherical volume.  The various microphone locations were
chosen so that the same reflections would be present in each of the response
measurements.  Each set of responses is delayed in order to align the received signals.
When this is done, the particular reflection under study sums additively, while the
unwanted reflections tend to cancel.  The drawback of this method is that a different set of
measurements must be taken for each reflection.



The last method described  by Verschuur et al utilizes the cross Wigner distribution.  In
this formulation the direct signals from the loudspeaker is used with the overall received
signal to form a cross Wigner distribution.  This is seen to result in an average of  the two
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signals.  This does destroy some of the resolution of the Wigner distribution, but a large
number of interference terms are reduced as a result.



6.3 - Musical Transcription



An interesting application of the Wigner distribution is in the time frequency analysis of
musical signals for the purpose of transcription.  This was addressed by Pielemeier and
Wakefield [Pielemeir92].  The major point made in this work was that the Wigner
distribution provides the experimenter with a great deal of flexibility.  This is due to the
fact that a large number of time frequency distributions can be derived from the Wigner
distribution by two dimensional smoothing operations.  The optimal smoothing kernel is
highly problem dependent.



Pielemeier and Wakefield present an appropriate kernel based on a signal model of a
summation of possibly non-harmonic sinusoids.  This smoothing kernel is applied to a
constant-Q version of the pseudo Wigner distribution.  This technique was applied to a
signal comprised of a flute playing E4 and a vibraphone playing the note C5.  A
comparison was made between a spectrogram, a standard pseudo-Wigner distribution and
the constant-Q pseudo Wigner distribution smoothed with their kernel.  The results
showed that the spectrogram obfuscated the trill and frequency modulation present in the
flute signal.  Furthermore, the attack was not as sharp as either the pseudo Wigner
distribution or the constant Q version.
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Appendix



This Appendix contains:
•    Wigner Distribution
• Spectrogram
• utility to plot frames (successively and randomly) of a distribution



MATLAB code to compute the Wigner Distribution



function W = wigner (signal, L, Mwin, HopSize, window, beta) ;
% computes the Wigner distribution
% Syntax: wigner (signal, L, Mwin, HopSize, window, beta);
%               signal - time series
%               L - length of analysis (DFT length is 2*L)
%               Mwin - Window size (optional )
%               HopSize - points between succesive Wigner evaluations
%                       (optional - default is one)
%               window - defines the window: ’bartlett’, ’hamming’,’hanning’
%                                           ’kaiser’
%                       (optional - default is rectangular)
%               beta - beta parameter (used only for kaiser window)
%
% The Wigner distribution is a time frequency representation.
% This routine was adapted from the algorithm presented in
%       Cornelius P. Janse & Arie J.M. Kaizer, "Time Frequency Distributions
%       of Loudspeakers: The Application of the Wigner Distribution,"
%       Journal of the Audio Engineering Society, Vol. 31, No. 4, April 1983.



if nargin < 2                                   % not enough arguments
      %  error(’ERROR -  Not enough arguments - Syntax: wigner (signal, L, Mwin(o
%pt), HopSize(opt), window(opt), beta(opt)) ;’)
end



signal = [zeros(1,L) signal]; % zero pad beginning



N = length (signal) ;                           % total number of points
FrameSize = 2*L - 1 ;                           % data frame size
Nmin = L;                                       % starting point
Nmax = N - L;                                   % ending point



if nargin < 4                                   % set HopSize
   HopSize = 1 ;                                % defaults to unit steps
end



if nargin < 3                                   % set window size
   Mwin = FrameSize;                            % default to 2*L - 1
end



W = zeros( 2*L, floor((Nmax-Nmin+1)/HopSize));  % initialize wigner array



if nargin < 5                                   % define the window
   Wn = [ones(1,Mwin) zeros(1,FrameSize-Mwin) ];     % rect is default
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else
  if strcmp(window ,’bartlett’)                 % bartlett
      Wn = [bartlett(Mwin)’ zeros(1,FrameSize-Mwin) ];
   end
   if strcmp(window ,’hamming’)         % Hamming
      Wn = [hamming(Mwin)’ zeros(1,FrameSize-Mwin) ];
   end
   if strcmp(window ,’hanning’)                 % Hanning
      Wn = [hanning(Mwin)’ zeros(1,FrameSize-Mwin) ];
   end
    if strcmp(window ,’kaiser’)                 % Kaiser
      Wn = [kaiser(Mwin,beta)’ zeros(1,FrameSize-Mwin) ];
   end
end



k = - (L-1):(L-1);
  P(k+L) = Wn(k+L) .* conj(Wn(L-k));



i = Nmin;
for n=Nmin:HopSize:Nmax                         % Main Loop - begin



  g(k+L) = signal(n+k) .* conj(signal(n-k));    % generate corr. function
                                                % Note: g(n) is Hermetian
  y = g .* P;
  x(:) = [y(L:2*L-1) 0 y(1:L-1)];               % Re-order the terms
                                                % So you can use the FFT



  X = fft(x);                                   % The result is real, but due
  W (:,i) = real(2*X(:));                       % to numerical probs. a small
                                                % imag. component is present
  i=i+1;
end                                             % Main Loop - end



W = W(:,L:i-1); % get rid of leading zeros
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MATLAB Code to Compute a Spectrogram



function S = STFT (signal, NDFT, Mwin, HopSize, window, beta) ;
% Short Time Fourier transform routine
%
% Syntax: S = STFT (signal, NDFT, Mwin, HopSize, window, beta)
%               signal - time series
%               NDFT - DFT size
%               Mwin - Window length
%               HopSize - points between succesive DFT’s
%               window - defines the window: ’bartlett’, ’hamming’,’hanning’
%                                           ’kaiser’
%                         (default is rectangular)
%               beta - beta parameter (used only for kaiser window)
% Note: If the window size is less than the DFT size, the signal
% is zero padded out to the appropriate length
%
%  NOTE: To plot the results use:
%               frameplot(Sp) - plots one frame at a time (return increments)
%               mesh(Sp)      - 3D plot ( xAxis = time, yAxis = freq )
%               imagesc(Sp)   - ( xAxis = time, yAxis = freq )
%                               (zero freq at top of graph)
%               imagesc(Sp)   - ( xAxis = time, yAxis = freq )
%                               (zero freq at bottom of graph)



N = length(signal) ;                            % signal length
Overlap = Mwin - HopSize;                       % Number of overlap points
NumSpec = fix((N-Overlap)/(Mwin-Overlap));      % total number of DFT’s
S = zeros( NDFT/2,NumSpec) ;                    % initialize STFT
SigMat = zeros( Mwin,NumSpec) ;



if nargin < 5                                   % define the window
   Wn = [ones(1,Mwin) ];                        % rect is default
else
   if strcmp(window ,’bartlett’)
      Wn = [bartlett(Mwin)’];
   end
   if strcmp(window ,’hamming’)
      Wn = [hamming(Mwin)’ ];
   end
   if strcmp(window ,’hanning’)
      Wn = [hanning(Mwin)’ ];
   end
   if strcmp(window ,’kaiser’)
      Wn = [kaiser(Mwin,beta)’ ];
   end
end



Wmat = [ones(NumSpec,1) * Wn]’;                 % Weight Matrix
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colindex = 1 + (0:(NumSpec-1))*(Mwin-Overlap);
rowindex = (1:Mwin)’;



SigMat(:) = signal(rowindex(:,ones(1,NumSpec))+colindex(ones(Mwin,1),:)-1);



SigMat = SigMat .* Wmat;                        % Weight the signals
SigMat = [SigMat’ zeros(NumSpec,NDFT-Mwin)]’;   % Zero Pad



S = fft(SigMat);                         % Note:
                                                % succesive col’s are time
                                                % succesive rows are freq



Miscellaneous Matlab Code



function frameplot(SigMat)
% frameplot(SigMat)
%       Utility for plotting matrices
%       plots succesive columns in succesion
%               Hit return for next column
%               Type a frame number to jump to that frame



[nrows,ncols] = size(SigMat);
col = 1;
Mx = max(max(SigMat));
axis ([0 nrows 0 Mx]);



while col < ncols
    plot(SigMat(:,col))
    title([’Frame: ’ int2str(col) ’ of: ’ int2str(ncols) ]);
   % pause
    frame = input(’’);
    if frame > 0;
       col = frame;
    else
       col = col + 1;
    end
end



function Wshift = wigshift(W);



% Wshift = wigshift(W);
%       performs a column by column shift of a Wigner Distribution
%       so that DC appears at the center of the plot
%       The rows then represent freqs from -Fs/4 to +Fs/4



[NumFreq,NumTime] = size(W);



for n = 1:NumTime
    Wshift(:,n) = fftshift(W(:,n));
end
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