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ABSTRACT

In this paper we address the problem of Blind Source Separation
when the mixing system is time-variant. We address the prob-
lem using piecewise linearly variant unmixing matrices in time
as an approximation. Using optimization theory we are able to
transform the Independent Component Analysis problem to han-
dle linearly time-variant unmixing matrices. Using a time-adaptive
whitening pre-processing step, ICA in the lie-group domain, and
an optimization problem in the original unmixing matrix domain
we are able to get accurate results for synthetically generated sig-
nals, bringing significant improvements over time-invariant ICA
methods.

1. INTRODUCTION

A lot of work has been done in separating acoustic sound sources
mixed in real room environments ([1], [2]). Three different fami-
lies of algorithms exist: algorithms that work in the time domain
([3]), algorithms that work exclusively in the frequency domain
([4]), and algorithms that work in both the time domain and fre-
quency domain at the same time ([5]).

While each family of algorithms has it’s advantages and dis-
advantages, all of them require the acoustics of the problem to
be time-invariant, meaning that the position of the sound sources
and the position of the microphones must be time-invariant. This
constraint might be too restrictive, for example, in the case of au-
tomobiles, where the noise sound sources might be moving at the
same time the driver is speaking to it’s car’s far-field cell phone
microphone

To address the problem of moving sound sources, a number
of online algorithms have been developed. In the case of [6], they
developed an algorithm that applies ICA frame by frame, in the
frequency domain, and then apply a post processing stage using
crosstalk component estimation and spectral subtraction to com-
pensate for the mixing remainings. In the case of [7], they use an
online PCA algorithm (SIPEX-G) to calculate the whitening ma-
trix and an online algorithm to calculate the rotation matrix. In
the work done in [8] they use a framewise on-line algorithm in the
time domain using Maximum Likelihood Estimation.

We can see that, in most cases, these online algorithms are in
charge of calculating unmixing matrices at each frame, indepen-
dently from the other frames. In real life, the unmixing matrix
might be varying even in the period of time covered by the frame,
so a framewise approximation might not be optimal. Also, if the
sources are non-stationary, the unmixing matrices found in the al-

gorithm might try to compensate for the temporal characteristics
of the source signals at some particular frames.

In this paper we address the problem of moving sources mak-
ing a piecewise linear approximation to the trajectory made by the
unmixing matrices in time. By making a piecewise linear approx-
imation we avoid the problems mentioned above. The temporal
characteristics of the signal won’t influence individual frames, in-
stead, the entire mixtures will contribute in the update of all the
linear pieces that make up the time-variant system.

To achieve these goals, we first mathematically analyze the op-
timization problem of blind source separation for moving sources
when using piecewise linear approximations of the unmixing ma-
trices. We do this in section 2. In section 2 we also derive a gra-
dient ascent algorithm that solves that optimization problem. An
approximate whitening stage is developed in section 3 to approx-
imate the problem to a piecewise linear rotation sequence of un-
mixing matrices. The piecewise linear rotation is analyzed in the
lie group domain in section 4. Finally a four steps algorithm is
developed in section 5. Results on synthetic data are reported in
section 6.

2. ICA OPTIMIZATION PROBLEM FOR MOVING
SOURCES

In this section we propose an optimization method to handle ICA
when the unmixing matrices are time-variant. The approximation
we use to model this time-variant change is a piecewise linear ap-
proximation. In the next paragraphs we will depart from the origi-
nal optimization problem of time-invariant ICA and change it to a
time-variant ICA optimization problem by handling equality con-
straints.

The original ICA optimization problem for time-invariant un-
mixing matrices is ([2]):

max
W

L (W ) (1)

where

L (W ) =
1

R

R−1X
r=0

fr (W ) (2)

fr (W ) = log (|W | gs (Wxr)) (3)

where L(W ) is the objective function, W is the optimization vari-
able, r is the time index, R is the total number of samples, xr is
the vector of observation mixtures, s is the vector of sources and
gs is the probability density function of the vector of sources s.
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According to [2], the batch gradient ascent update rule for this
update problem is determined by the following algorithm:

vr =

2
664

g′
s1

(s1r)

gs1 (s1r)

...
g′

sN
(sNr)

gsN
(sNr)

3
775 (4)

∇W fr (W ) = W−T + vrx
T
r (5)

∇W L (W ) =
1

R

R−1X
r=0

∇W fr (W ) (6)

W := W + µ∇W L (W ) (7)

where N is the number of dimensions of x, s and v; and gsi is the
pdf of the scalar variable sir at any time r.

2.1. Piecewise linear Approximation

While we want the un-mixing matrix to be able to change in time,
we don’t want to have to optimize a different un-mixing matrix at
each time interval, since the number of variables in the optimiza-
tion problem would be too high. We also don’t want to divide the
mixtures into small frames and run a different optimization prob-
lem for each of them, since we want a robust method that takes in
account all the samples in the mixtures to train the mixing matri-
ces.

For these reasons, we propose a piecewise linear approxima-
tion of the change in the un-mixing matrices. Mathematically, this
means that the unmixing matrix is now going to have a time index,
and it’s going to vary in the following way:

Wr =

8>>>>><
>>>>>:

(1 − r
Ra−1 )Wa + r

Ra−1 Wb , if 0 ≤ r ≤ Ra − 1

(1 − r−Ra
Rb−Ra−1 )Wb + r−Ra

Rb−Ra−1 Wc , if Ra ≤ r ≤ Rb − 1

...

(1 − r−Rx
Ry−Rx−1 )Wy + r−Rx

Ry−Rx−1 Wz , if Rx ≤ r ≤ Ry − 1

(8)

where Wa, Wb ... Wz are the new unmixing matrices that the new
optimization problem will have to find. Ra, Rb, Rc ... Ry are
the endpoint times of each linear piece in the approximation. For,
example, from time 0 to time Ra, the unmixing matrix changes
linearly in time from Wa to Wb.

We will see in the next subsection that the new algorithm doesn’t
operate frame by frame independently, instead, it updates parame-
ters taking in account all the samples in the mixtures.

2.2. New Optimization Problem

In this subsection we consider an approximation of only one linear
piece. The multi-piece case can be easily derived from the algo-
rithms presented in this subsection. In this case, the optimization
problem would be:

max
Wa,Wb

L2 (Wa, Wb) (9)

where

L2 (Wa, Wb) =
1

Ra

Ra−1X
r=0

fr (Wr) (10)

fr (Wr) = log (|Wr| gs (Wrxr)) (11)

Wr = (1 − r

Ra − 1
)Wa +

r

Ra − 1
Wb (12)

From the way the optimization problem is defined, we can see
that all optimization variables depend on each other and will be up-
dated given all samples of the mixtures. We see that, even though
each unmixing matrix Wa, Wb... Wz will be updated only by
the vicinity pieces in the gradient ascent rule (see subsection 2.3),
these updates will modify the found sources for the next iteration,
and this modification will affect all the unmixing matrices in the
problem.

2.3. New Gradient Ascent Rule

A strict definition of the optimization problem for our time-variant
case would be:

max
Wa,Wb,Wr

1

Ra

Ra−1X
r=0

fr (Wr) (13)

Wr = (1 − r

Ra − 1
)Wa +

r

Ra − 1
Wb (14)

We see that the optimization problem is very similar to the
optimization problem of the invariant case. The main difference
is the presence of equality constraints. We handle those equal-
ity constraints departing from the gradient ascent rule of the time-
invariant case (formulas 7, 6 and 5) and applying the chain rule as
shown in the following algorithm:

∇Wr fr (Wr) = W−T
r + vrx

T
r (15)

∇Wafr = (1 − r

Ra − 1
)∇Wr fr(Wr) (16)

∇Wbfr =
r

Ra − 1
∇Wr fr(Wr) (17)

∇WaL2 (Wa, Wb) =
1

Ra

Ra−1X
r=0

∇Wafr (18)

∇WbL2 (Wa, Wb) =
1

Ra

Ra−1X
r=0

∇Wbfr (19)

Wa := Wa + µ∇WaL2 (Wa, Wb) (20)

Wb := Wb + µ∇WbL2 (Wa, Wb) (21)

Wr := (1 − r

Ra − 1
)Wa +

r

Ra − 1
Wb (22)

With this update rule we are able to find the closest piecewise
linear approximation to the variation of the unmixing matrices. In
sections 3 and 4 we will explore two additional steps to find a good
initial point for the gradient search of this section.

3. APPROXIMATE WHITENING

There is still the question of if the gradient ascent algorithm of
section 2 would be efficient enough to find the solution without
spending too many iterations. It is described in [1] and [2] that
whitening the data before starting the optimization process reduces
considerably the number of iterations needed since the algorithm
only has to find a rotation matrix.

In the time-variant case, we would like to find a changing but
continuous whitening matrix over time, and a changing but contin-
uous rotation matrix over time.

In this section we describe an approximate whitening process
that let us calculate a continuous rotation process in time for sec-
tion 4. This is the only process in the final algorithm that actually
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processes frames independently from each other. Furthermore, this
process is designed so that the algorithm in section 4 can use a
piecewise linear approximation too, instead of having to analyze
separate frames of the mixtures.

Given the covariance matrix C of the mixtures, a common way
to whiten the data is by multiplying it by the eigenvectors matrix
of C and the square root of the inverse of the diagonal matrix con-
taining the eigenvalues of C:

C = E(xxT ) (23)

C = V ΛV T (24)

y = Λ− 1
2 V T x (25)

We can see that this whitening method consists of a rotation
and a rescaling of the axes. Since the rotation can be different
and discontinuous for different periods of time, and since in the
next section we need a continuous variation of the rotation, we use
a whitening method that rotates the sample back to it’s original
angle, as shown in the following formula:

y = V Λ− 1
2 V T x (26)

We can see that in this case, we are applying a rotation on the
sample x, a rescaling and a rotation back (done by V ) to the angle
it had before. This will allow us to have a continuous rotation
system to analyze in section 4.

4. LIE GROUPS AND PIECEWISE LINEAR ROTATIONS

It has been found in [3] that the use of the natural gradient consid-
erably reduces the number of iterations necessary for convergence
of ICA algorithms. Self-stabilized algorithms such as in [9] can
also considerably increase the convergence rate of ICA algorithms.

What these algorithms aim to do is to modify the gradient
calculated in formula 5 such that the new gradient is somehow
a rotation, or an equivalent of a rotation. This means, forcing the
gradient to reach the unmixing matrix to have the orthogonality
characteristic W T W = I .

The work presented in [10] went beyond, and, instead of re-
stricting changes in the gradient, it elegantly defined the ICA op-
timization problem as a problem with an orthogonality constraint
W T W = I . This is an equality constraint too, and handling it
implies working in the lie group space of orthogonal matrices.

The gradient ascent rule in the lie group domain is easy to
calculate given the gradient ascent rule derived in section 2 and is
stated by the following algorithm:

∇W fr (W ) = W−T + vrx
T
r (27)

∇Θfr = (∇W fr (W )) W T − W (∇W fr (W ))T (28)

∇ΘL =
1

R

R−1X
r=0

∇Θfr (29)

W := e(µ∇ΘL)W (30)

And the gradient ascent rule for the piecewise linear time-

variant case would be estimated by the following algorithm:

∇Wr fr (Wr) = W−T
r + vrx

T
r (31)

∇Θr fr = (∇Wr fr (Wr)) W T
r − Wr (∇Wr fr (Wr))

T (32)

∇Θafr = (1 − r

Ra − 1
)∇Θrfr (33)

∇Θbfr =
r

Ra − 1
∇Θrfr (34)

∇ΘaL2 =
1

Ra

Ra−1X
r=0

∇Θafr (35)

∇ΘbL2 =
1

Ra

Ra−1X
r=0

∇Θbfr (36)

Θa := Θa + µ∇ΘaL2 (37)

Θb := Θb + µ∇ΘbL2 (38)

Θr := (1 − r

Ra − 1
)Θa +

r

Ra − 1
Θb (39)

Wr := eΘr (40)

Note that the linear pieces are not defined in the unmixing ma-
trices (W ) domain but in the lie group (Θ) domain. Note also that
Θ is a matrix with angles as elements and it’s form is:

Θ =

»
0 θ
−θ 0

–
(41)

5. FOUR STEPS ALGORITHM

Although mathematically correct, the gradient solution of section
2 doesn’t have any guarantee to be an efficient solution. We ex-
plored a special whitening step in section 3 and a continuous rota-
tion step in 4. Both of them are dependent on each other. Since the
whitening step is done in a framewise manner, we cannot expect
accurate results from the algorithm developed in 4. However, we
would expect these two algorithms to give an approximate good
value to use as an initial point for search for the final algorithm
designed in section 2. From that reasoning, the algorithm we use
is made out of the following 4 steps:

I Whiten data as described in section 3

II Find piecewise linear rotation matrices as described in section
4.

III Do a piecewise linear regression on the resulting unmixing
matrices from step I and step II.

IV Perform the algorithm of section 2 using as initial matrices the
starting matrices an ending matrices of each piece resulting
from step III. Optimize until convergence.

6. RESULTS

In this section we present results for some of the steps of the algo-
rithm of section 5. In this work all results were done with synthetic
white data, generated using a sigmoid probability density function.

In figure 1 we show the linear variation along with the results
of parts II and part III of the 4 steps algorithm. The dotted line
are the unmixing matrices given by part II of the algorithm. The
unmixing matrices resulting from part III are shown in solid lines,
and the real unmixing matrices are shown in dashed lines. We
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Table 1. Mean Square Error (MSE) results for 4-steps algorithm,
time-invariant ICA (T.I. ICA), output of part III of the algorithm
and framewise ICA

Algorithm 4-Steps T.I. ICA part III Framewise ICA
MSE 0.0044 0.4972 0.0058 0.0831

can see that the result from part II of the algorithm can be approxi-
mated to a line, close to the real mixing system. This gives a robust
enough starting points for part IV of the algorithm.

In figure 2 we show the optimization space of part III of the
algorithm. There are local maxima and global maxima. Several
global maxima are spaced by Π

2
radians as expected. We avoided

getting stuck in local maxima by downsampling the optimization
space before the gradient ascent algorithm.

Table 1 shows mean square error (MSE) of our 4-steps algo-
rithm compared to a time-invariant ICA algorithm [2]. We also
show the MSE of the output of part III of our algorithm, as way to
show the need for part IV. Finally, we show results of a framewise
ICA algorithm without post-processing. The mean square error is
calculated between the original signals and the separated signal by
the each of the algorithms.

7. CONCLUSIONS

We have shown a new approach to deal with time-variant mixing
systems for blind source separation. We transformed the ICA al-
gorithm using optimization theory to fit a piecewise linear approx-
imation of the time-variant mixing matrices. To achieve a good
choice on the initial step on the gradient descent algorithm, we per-
formed a modified pre-whitening approach, together with a piece-
wise linear approximation in the lie-group domain. Results shown
on synthetic data prove the superiority of this algorithm compared
to time-invariant ICA algorithms. Better performance than frame-
wise algorithms might be implied from comparing with the results
reported on a simple framewise algorithm in table 1.
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