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ABSTRACT
A system which tries to identify the musical instruments
playing concurrently in a mixture is investigated in this pa-
per. The features used in classification are derived from
the Independent Subspace Analysis (ISA) which somewhat
decomposes each source, and the mixture, into its statisti-
cally “independent” components. Without re-grouping or
actually separating the sources, they offer physiologically-
motivated classification of instruments, assuming the de-
composition is robust to the mixing process. The system
is evaluated on two-tonal instrument mixtures from a set of
five instruments and a phrase of real song from CD.

1. INTRODUCTION

The problem of sound source identification is not only an
academic curiosity on how the human brains work and how
to make a computer system which can do the same. A de-
sire for automatic classification of audio materials accord-
ing to instruments makes the problem a practical one. A
number of techniques and features have been experimented
with in order to identify the musical instrument from an iso-
lated tone [1] [2]. There have been, however, far fewer
works which consider identification problems from poly-
phonic signals. Among them, Eggink and Brown [3] used
energy bands as features, omitting from use in classification
the bands which tend to have overlapping spectra. They ob-
tained on average 49% identification rate using five instru-
ments over one pitch range. Time-domain template match-
ing and features related to note onset and spectral distribu-
tion were investigated in [4] and [5] respectively for two-
tonal mixtures from a set of three different instruments.

In this paper, ISA is used to decompose a mixture into its
“statistically independent” components and spectral bases,
hopefully spanning the subspace of each original source in
the mixture. The system does not rely on pitch estimation in
contrary to previous systems. Physiologically intuitive fea-
tures can also be derived from the learned bases for classi-
fication which are usually lost when more than one sources
are active simultaneously.

2. INSTRUMENT IDENTIFICATION USING ISA

Recently, the use of reduced-rank spectral decomposition
into its “independent” subspaces showed a promising way
to separate the time-varying spectral contents of a single
channel audio mixture into small meaningful components
in a data-driven manner [6]. In short, the reduced-rank ISA
is a decomposition of the magnitude spectrogramX of a
sound mixture into its “independent” components according
to the linear modelX=AS, keeping only the components
with significant amount of energy. The columns ofA are
the spectral bases which spanX while the rows ofS con-
tain their corresponding (temporal) coefficients of the linear
summation. The matricesA andS as such can be learned
using any of ISA’s predecessor, Independent Component
Analysis (ICA) algorithms. Each source can be spanned by
more than one of the bases. A suitable clustering based on
components similarity can be used to group the bases that
make up the same source and approximately reconstruct the
source via inverse-STFT. Smaragdis also showed in [7] the
consistency between the notion of mutual independence of-
ten used in the cost function of ICA and the grouping of
auditory cues of the same source making it even more intu-
itive.

2.1. ISA of a single instrument sound

When ISA is applied to a spectrogram of a tone produced
by an instrument, the result is the decomposition into com-
ponents roughly distinguishable as sustain, the note-attack
and/or other small spectral variations as shown in Fig. 1
for a piano tone. Naturally, the most energetic component
corresponds to the sustained note’s spectrum with a lot to
offer for identification. Despite having lesser energy, other
components may also be useful. Human has been found to
use note-attacks, the breathiness and some spectral dynam-
ics in source identification as well as the spectral envelope
of the tone. In addition, it eliminates the problem of how a
note-attack should be defined, since it is now automatically
determined according to its mutual independence to the sus-
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Fig. 1. ISA magnitude spectral bases (left) and magnitude
temporal envelope coefficients (right) of a G4-piano tone.

tain portion. Similar decomposition has been found in other
instruments used in this experiment.

When there are multiple sources in the mixture, the sys-
tem hopefully will emit something closely enough to the
original basis components of the sources, allowing physio-
logically intuitive use of such features described above in
identification. Such a dramatically successful example is
found in a mixture of Oboe and Bb-Clarinet playing note
C4 concurrently with Bb-Clarinet lasting about 0.5 second
longer. Despite having the same pitch and very similar sound,
the spectral bases have been found to be rather well sep-
arated and are readily identified by a comparison to their
isolated tone’s first ISA spectral bases. Using a classifier in
section 3, 7 out of 8 components are classified correctly with
transient components matching with similar components in
the trained prototypes. Admittedly, however, it is still re-
quired to be sufficiently non-overlapping, either temporally
or spectrally, for such a healthy separation.

Though more than one bases may belong to the span-
ning set of one source subspace, we have to stop short of
grouping them. Clustering of components belonging to the
same source is problematic. This is not only because of the
difficulty in estimating a reliable similarity measure as used
successfully in [7] for a complex mixture, but also by the
fact that they simply cannot be used to group transient and
steady-state of the same sources together.

The advantage of using such a data-driven algorithm lies
in its ability to do auditory grouping with no extra rules [7].
It does not rely on pitch estimation which is hard to do in
a polyphonic signal. However, the drawbacks include its
reliability on an exposure long enough for meaningful com-
ponents to be learned. The current linear model is also lim-
iting and only approximately true with respect to the use of
magnitude. There is also no guarantee that the bases derived
from a mixture will be the same as those learned from a sin-

gle instrument, or even whether they will be separated like
the example shown above. From experiments, this happens
from time to time and brings down the identification perfor-
mance. For example, a beating effect of nearby harmonics
can cause the algorithm to yield a basis which is unidentifi-
able with any of the individual sources. In the next section,
we will then examine how well the system can do in lights
of these potential obstacles.

3. CLASSIFICATION SYSTEM

The Infomax ICA algorithm by Bell and Sejnowski [8] is
used to learnA andS from X in the linear model, keep-
ing only N = 8 components for maximum use in further
classification. The window length is 10 ms to capture the
transient with 50% hop size. The convergence is fast but
annealing is also applied.

Various features are calculated from the magnitude spec-
tral bases and temporal envelopes to be used as input to clas-
sifiers in the next stage. They include the Mel-Frequency
Cepstral Coefficients (MFCC), the Perceptual-Linear Pre-
diction Cepstra (PLPC). They are all calculated using Mal-
colm Slaney’s Auditory Toolbox [9] with 40 frequency bands.
The first coefficient is omitted to ignore scaling difference,
leaving only twelve each (MFCC-12 and PLPC-12). They
describe the shape of a spectral envelope in log-frequency
scale similar to the human ears and have been enjoying a
considerable success in the past recognition tasks, especially
in speech. An additional spectral feature also tried in this
experiment is the log-scale spectral centroid (SC) in kHz.

While it is possible to use temporal features, they are
notably hard to extract from a polyphonic signal, requiring
a good segmentation which is in general hard to do auto-
matically. However, for a pre-segmented note in the case
of the two-tonal mixtures, some easy-to-calculate tempo-
ral features are experimented. They are the temporal cen-
troid (TC), as a ratio of total duration, the crest factor (CF)
in peak/rms and amplitude modulation content, as a ratio
of total energy, in the band 4-8 Hz (AM48) and 10-40 Hz
(AM1040).

The k-nearest neighbor (k-NN) and Gaussian Mixture
Models (GMM) are used as classifiers in this experiment.
For k-NN, Mahalanobis distance is used to deal with differ-
ent scaling and correlation among features. It almost always
gives 2-3% better results in the experiments than using Eu-
clidean distance. Each “independent” component and ba-
sis is individually classified before taking votes to decide
which two sources make up the mixture in the experiment.
The maximum number of eight components take part in the
vote. If a draw occurs, the source assigned to more of the
higher energy components prevails. If still undecided, the
higher total number of k-NN’s and the lower total distance,
or the higher total log likelihood in the case of GMM, will



Instr. (%) Flute Bb-Clar Cello Oboe Violin
Flute 100 0 0 0 0

Bb-Clar 0 83 0 17 0
Cello 7 0 86 0 7
Oboe 0 0 0 100 0
Violin 0 0 8 0 92

Table 1. Confusion matrix (%) of isolated tones of five in-
struments, using kNN-7 and PLPC-12 as features.

be considered until two sources are chosen.
Samples of instruments (about 60 each) were taken from

the Iowa and McGill chromatic scale samples1. To limit the
factor attributed to pitch, only the octave C4-C5 was used.
80% of the notes available were used in training, while the
remaining will be combined exhaustively to make mixtures.

4. RESULTS

For comparison with two-tonal mixture, the identification
result from isolated notes is shown in Table 1 using k-NN
classifier withk = 7, N = 8 and PLPC-12 as features.
The use of more than just the first component is found to
be beneficial on average in some cases as shown in Fig. 3.
Violin and Bb-Clarinet are mostly confused with Cello and
Oboe respectively as should be expected.

The identification results on two-tonal mixtures are shown
in Fig. 2. The best combinations on average for k-NN
classifier, using only spectral features, is whenk = 7 and
PLPC-12 are used as features. For GMM classifier, the
number of GaussiansK = 40 gives the best performance
using MFCC-12 and SC. Since temporal features are not
usually available in real recording, the performance when
they are incorporated is also shown separately in Fig. 2.
The best combinations for k-NN and GMM classifier, with
additional temporal features, come from the set{PLPC-
12,AM48}, k = 7, and{MFCC-12,TC,AM48}, K = 40,
respectively. The best average rate of correct identification
of both instruments is 45%, comparing with 10% for ran-
dom guess, whereas that of identifying one instrument in
the mixture correctly is 66%, compared with 40% for ran-
dom guess (guessing two instruments in the mixture and get
any one right). Generally, Flute, Bb-Clarinet and Oboe are
not as well-identified as Cello and Violin probably due to
the pitch-effect on spectral formants which are captured by
PLPC and MFCC. GMM classifiers do not perform as well
as the k-NN, probably due to a small set of training samples.

In Fig. 3, it is shown that using more than two ISA
components (the first two usually correspond to the sustain

1Electronic Music Studio, University of Iowa and McGill Master sam-
ples, McGill University
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Fig. 2. Best average identification rate (%) of Flute, Bb-
Clarinet, Cello, Oboe and Violin, with the average of get-
ting one instrument correct and both correct on the two right
most columns. See text for details of classifiers.

components of each of the two sources) from the mixture in
classification is not beneficial in general. This is in contrast
to the identification of isolated tones as also shown on the
same graph.

As a limiting case, the samples used to mix for testing
are also trained and stored as prototypes. This can improve
the result by at most 3% on average for all classifiers ex-
perimented with, indicating that most of the shortfall lies
in the ISA algorithm which cannot achieve separation into
original source components as in training.

As another comparison, Bb-Clarinet and Violin are re-
moved from the experiment to remove confusion which might
have brought down the performance. They are replaced by
Piano and French horn. The result is relatively unchanged,
having the best performance for spectral features only of
40% and 65% for both and each correctly identified, con-
firming that it is not the classification system but the ISA
that is responsible for most incorrect identification.

In a real polyphonic song, it is not possible to deter-
mine how many components we should use in classification.
Segmenting the phrase into individual notes is certainly dif-
ficult if not impossible which means temporal features can
hardly be used. It is also even more unlikely that the at-
tack of an instrument will be useful in identification then
as similarly argued in [1]. Therefore, we here use only the
features derived from spectral bases from each random seg-
ment of the song and then combine the score or the likeli-
hood that the instruments are present in the given phrase.
Here, we simply perform ISA on each chunk of the tree-
structured non-overlapping phrases and calculate the score
which are the percentage of number of k-NN in classifica-
tion at each level (could use log-likelihood if GMM was
employed). Level 1 corresponds to using the whole phrase,
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Fig. 3. Average identification rate (%) of isolated tones and
two-tonal mixtures as a function of number of ISA compo-
nents (N ) used in classification for kNN-7 and GMM-30
classifiers

while Level 4 corresponds to segmenting the phrase into2
4

non-overlapping chunks for independent basis learning and
identification. Learning from different scales is essential
to capture the note of instruments at different levels. The
kNN-7 classifier using PLPC-12 andN = 1 on a 10-second
phrase of a Piano-Flute-Violin trio playing simultaneously
yields the score shown in Table 2. In Level 1, the piano
which plays background arpeggio (and hence repetitive over
time) is well-captured despite being softer, while at a higher
level where phrases’ duration are shorter, down to an indi-
vidual note level, the violin can be captured. Combining
the scores across levels will average out misidentificationas
seen in Cello and Alto-Saxophone.

5. CONCLUSION

The decomposition by ISA is shown to give physiologically
intuitive features for instruments identification. The inclu-
sion of the lesser energy components in classification can
be beneficial for isolated tones but not so for the two-tonal
mixtures. In real song, their roles are diminished. Only the
sustain components will be learned and used in identifica-
tion. A better learning algorithm is called for, for example,
the non-negative matrix factorization which has been used
for piano transcription in [10] might be investigated. Future
works include more experiments on a larger database, pitch
ranges and instruments, as well as its robustness to noise
and percussive interference.

Score (%) P F Bb C AS FH O V
Level 1 43 29 0 14 0 0 0 14
Level 2 50 14 0 0 7 21 0 7
Level 3 29 32 0 7 4 11 4 14
Level 4 25 27 0 0 0 14 4 30

Table 2. k-NN score as percentage of 7-nearest neighbors
at 4 levels for instruments Piano (P), Flute (F), Bb-Clarinet
(Bb), Cello (C), Alto-Saxophone (AS), French-Horn (FH),
Oboe (O) and Violin (V).
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