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ABSTRACT v(n) w(n)

In this paper, a joint parameter estimation of the derieagjiottal
source waveform and the vocal tract filter is presented whsre 1 x(n)
piration noise and observation noise are taken into acaowithin g(n) m y(n)
a state-space model. The Rosenberg-Klatt glottal modelad in

conjunction with an all-pole filter to model voice productiol he
EM algorithm is employed to iteratively estimate the modeigm- Figure 1:Voice production model
eters in a maximume-likelihood sense, utilizing a Kalman sther
in the expectation step. The model and estimator allow fer im
proved estimates of model parameters for resynthesisliggebn
output which sounds natural and remains flexible for modifice

) ) ; pulse model is a simplified derivative version of the moresgeh
a desirable property for expressive vocal synthesis.

and popular Liljencrants-Fant (LF) model [8]. It fits welkinthe
linear state-space formulation and captures the charstitsrof
1. INTRODUCTION three different modes of voice: breathy, normal and pres$ais
voice production model and its motivation follow closelg thork
A source-filter model for voice production has been studied a by Lu [2] where convex optimization is used to jointly estimthe
used in a number of speech synthesizers, for example, the KL-vocal tract filter and the glottal source. Here, we insteagleyn
SYN88 [1]. A good parametric model of a glottal source offers 3 statistical model to include uncertainty due to obseovatioise.
parsimonious representation of the sound for efficientregdind In the remainder of this paper, we describe the model emgloye
flexible resynthesis, as well as providing features for miaey- and analysis/resynthesis in terms of it, followed by sonsilts
tification applications. While most speech synthesis mesehas and discussion.
provided us with good voice production models, as well adhmet
ods for accurate estimations of model parameters [2][3feW
have considered automatic estimation of model parametptise 2. EM AND KALMAN SMOOTHING PARAMETER
ity when noise is present. In the speech enhancement oésear ESTIMATION
arena, however, statistical techniques for parametenattn and
speech enhancement in noise are well known. Examples of this2.1. Model and Analysis
type of speech enhancement based on various voice models ar
[5][6][7]. Algorithms that consider uncertainty due to seiand
a good model of voice production should allow for more acmura
identification of parameters. Its potential applicatioresia voice
synthesis and coding of a vocal sound recorded in real liferavh
noise may be present or the recording equipment is not gntire
noise-free.
In this paper, we focus on the parameter estimation aspect fo
a reconstruction of a voice from recording, possibly undedm
erately noisy conditions, rather than general denoisirge State-
space model is used to model the voice production and thexabse
tions obtained at the microphone. An Expectation-Maxirtiizea
(EM) algorithm has been used in speech enhancement applica-
( >:{

Soice production is modeled as a linearly separable soumgeti
cascaded with an all-pole vocal tract filter, as shown in FEgu
1. The source consists of the derivative glottal wavefain)
summed with some aspiration noisg:). The lip radiation, mod-
eled as a differentiator, has been folded into the glottiegwave-
form to give this derivative, assuming linearity. The modst
sumes there is no source and tract interaction or any fornof n
linearity. It is also only applicable to non-nasal voice.eThodel
for the derivative glottal waveform is the Rosenberg-Khatidel
which can be expressed as follows:

2
tions before [5]. Here, we extend beyond most Kalman filtgrin 2agn/fs = 2bg(n/fs)", 0<n<To-0Q- fs
based enhancement algorithms by modeling the source isput u 0, To-0Q fs <n<To-fs
ing a parametric form of Rosenberg-Klatt (RK) [1], instead o (1)

just white noise or a pulse train as used in [5]. The RK glottal o7 AV
*Supported by Toyota InfoTechnology Center, US. ag = 4-(0Q2? - Ty) )
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wherem is frame index, moving from one glottal period to an-
other, andr is the sample index within a frame, ranging franto

N,,, for framem. We consider a period from one glottal closure
instant (GCI) to the next so equation (1) is modified to have an
integer offsetn., which is the starting index of the glottal source
open-phasen. therefore determines the open quotient (OQ) such
thatOQ = (To —n.)/To. The variances of process noise at frame
m, vm, and global observation noiseareq,, andR, respectively.
Ideally, if the deterministic model of the voice productisraccu-

Figure 2:Two periods of Rosenberg-Klatt derivative glottal wave- fate, vm(n) can be thought of as the aspiration noise, which is

form model showing the perio@), glottal closure instant (GCI), ~ nothing more than a residual or model error here.
closed-phase (CP) and open-phase (OP) At each iteration, expectation of the likelihood followey b

maximization (by finding ML estimates of the parameters) are
performed. The E-step is achieved by computing the sufficien
statistics of the posterior distributioR®,(X |Y, U, 6) using Kalman
smoothing, whereX is the (hidden) clean speed,is the relevant

27 - AV set of observationd/ is the input, and is the set of all model pa-
by = T35 ®3) T
4-(0Q3-T3) rameters. LeD,, = [a1m -+ apm  agm bgm]| .Dur-
where T, is the fundamental periodf, is the sampling fre- ing the M-step, the parameters are updated in turn as fallows
quency, AV is the amplitude parameter, ar@Q is the open- N
quotient of the glottal source. Note that spectral tilt isexplicitly Drew) — [N 3 ]71 Zm vi(n) ©)
modeled here, unlike in KLGLOTT88 [1] or [2]. An example of - Leen (n) Z(n)u(n)

the waveform is shown in Figure 2. =2

We observey(n) at the microphone which is assumed to be the
sum of the vocal sound and a stationary additive white Gaossi Nm Vi(n)
noise. Modeling the vocal tract as an all-pole filter of ord&r g\ = Z ( v (n)—2D” {u(n)f{T(n 3 1)}
the voice production model is similar to Lu's [2]. The system n=2
state-space model representation is as follows:

+ DTJ(n)D) @)
State-Space Formulation of Lu’s model

xm(n + 1) = Amxm(n) + Bmum(n) + Vm(n) (4) R(new) i{: % y _C. )A(m(n)y n(n)]
Yon (1) = Cotn(m) + w(n) (5) 2%11 m s @
where
Vm NN(07 Q77l)7 w NN(07R)
_ Vi(n) x(n — 1)u” (n)
i I(n) = L(n)scT(n 1) um)yu’ (@) ©)
Xm(n) = [gm(n) zm(n—1) - zm(n—P+1)] The frame index is dropped when there is no confusion and all

parameters on the right hand sides are current estimaigén)
@1m  Qam - apm and Vi (n) are the covariances given b}/lt)he Kalman smoother,
1 0 - 0 vi(n) is the first column oV (n) and V""" (n) is the top-left-
corner entry ofVo(n), i.e.,

A,=1]0 1
- Vi(n) = (x(n)x" (n - 1)) (10)
0 0 1 0
b Vo(n) = (x(n)x" (n) (11)
Bm = [ago,m g(’)m] where(-) denotes the posterior averages from the Kalman smoother

from the E-step. The iteration is repeated until convergenc
Unfortunately, the OQ-related parametey, is nonlinear with
2-(n—nem)/fs <n <N respect to the error minimized; we therefore need to do a grid
—3-((n=nem)/f)?]’ fe;m S 12 N search. Providing that its initialization value is closethe so-
T lution, only a few points in the vicinity of the current estite are

[0 0] ) otherwise needed for calculation. However, it is important to say foata
given set of current estimates of other parameters at oratidn,
gm O even a grid search on. might not lead to an eventual globally
Qm = { 0 0] optimal solution. A way to ensure optimality is to start bytiop

mizing other parameters for all valuesraf and then pick the one
C=[1 0 - 0 that gives the highest likelihood at convergence. This oukib,
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however, computationally expensive. We therefore conieitld
trying to get good initialization and only make sure the litkeod
function increases at each iteration doing grid searchhercur-
rent ML estimates of other parameters. Keeping the likelého
function increasing, without actually maximizing it, stjuaran-
tees EM’s monotonic convergence.

The M-step of AR filter coefficients estimation is equivalant
the covariance LPC method as a result of maximizing conuitio
likelihood [9]. The stability is therefore not guaranteddence,
we check for unstable poles at each iteration and reflect treark
inside the unit circle. Instability, however, rarely happeainless,
for example, the noise has very large spectral peaks. Anathe
vantage in using EM is that constraining parameters can be do
without sacrificing monotonic convergence behavior, ag las at
each constraining, the likelihood is ensured to be incnegasiVe
can therefore constraim > 0 andb > 0, as well as the physical
range of OQ and perform a stability check on the vocal tratetrfil

At each iteration, the glottal closure instant (GCI) for the-
pose of model fitting is also updated by searching for a minimu
peak in the interested period gfr). While GCls are assumed to
be available, they need not be very accurate. The algoritom c
refine all parameters, including the GCls, to fit the obsémat
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Figure 3:Prediction error surface for differe®Q values, all for
FO0=100Hz, except for the bottom right, where FO=200Hz

After convergence, all parameters are smoothed using a nar-sise present. By doing so, observation noise is also ncetong

row Hann window smoothing kernel, with AR coefficients con-
verted to reflection coefficients before smoothing to preseta-
bility. Non-smoothed parameters otherwise cause audibtifacts.
The resynthesis employs a lattice filter whose reflectiorfficoe
cients change at each glottal closure instant.

2.2. Algorithm Initialization

Just like any other ML method, the EM algorithm has the risk of
converging to a suboptimal local maximum. Therefore, good i
tialization is crucial for global convergence. ConventibhPC
can be used for initialization of the AR coefficients undeghhi
SNR conditions. The OQ can be estimated from the following ex
pression given by Fant [10]

H, — Hy = -6+ 0.27 - exp(5.50Q) (12)
whereH; and H- are the spectral amplitudes of the first and sec-
ond harmonics. Alternatively, we can do exhaustive seascthie
best OQ in a few frames and use it as an initial value for adja-
cent frames. Figure 3 shows the prediction error surfacetwas
an inverse relationship with the likelihood when all othargm-
eters, except OQ, are at the true values for a synthetic imjiht
AV = 0.001 and the AR coefficients are taken from LPC analysis
of a frame of sound /a/. Where the range towatdg = 1 is not
shown in the top-left figure, the exponential trend contimughe
figure shows that OQ should be over-initialized if in doubive®
that physically from experimental studies [D]4 < OQ < 1, a
grid search only in that range suffices to bring the likelithag.
Also note that the error curve is convex in that interval foede
examples, implying a gradient method could be reliably used
The presented ML estimation is not based on perception.eFher
fore, the internal LPC step will result in equal weightingass
all frequencies, and high-frequency formants, which arpam
tant to perception, are not neccesarily modeled and couldige
ing. This is especially important in resynthesis since caniva-
tive glottal source model has an inherent -6dB/octaveafbll-To
remedy this, we obviously can do preemphasis before St
iteration. However, this is not advisable when there isifigant

white, unless the noise can be assumed to have the same spec-
tral roll-off characteristic. Alternatively, we can do iesation of

the AR coefficients using more appropriate weighting, likeped
frequency axis transform on the data, while making sure ttieat
likelihood is still increasing. Also, some extrapolationtvasing

will be needed to recover formants that are buried undeendis
corporating these features within the presented iterfriéweework

is the subject of further investigation.

3. RESULTSAND DISCUSSION

The algorithm has been applied to a male singing voice with vi
brato and tremolo, singing /a/ at a fundamental frequencyrat
123 Hz. The sampling rate is 16 kHz. We first test on the clegn si
nal applying preemphasis, using filter-order= 20. The resyn-
thesis sounds natural, and similar, though not exactly dngesas
the original. A slightly noisy sound, with white Gaussians®
added to give SNR=20dB, was also tried, using preemphasdis an
careful monitoring. The result is a similar sound that migiind
less natural due to inaccuracy and smoothing of parametexs-
ever, in contrast to general speech enhancement where the en
hanced output is taken from state estimates given by Kalrtan fi
ing, it is completely free of musical noise. Wihtout preeragis,
the algorithm is more stable due to stable all-pole filteinesstes.
The output sound is still natural but does not sound as baght
the original. Using initial preemphasis does not seem to slo a
much harm when pink noise (roll-off -3dB/octave) is added in
stead at the same level of SNR=20dB and the resynthesized sou
is excellent compared to the original. All results are alzi at
http://ccrma.stanford.edu/ pj97/WASPAAOS/waspadéBo.html
From listening, the sound generated using the vocal traet fil
estimates after iteration sounds more accurate (closertehan
using the initial noisy estimates. The median ltakura&ssjtec-
tral distance between the all-pole filter coefficients atedifrom
clean signal and from iterations decreases significantly affew
iterations for all noisy cases above. Figure 4 shows thad¢hiea-
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Figure 4:The derivative glottal waveforng(n), the initial model
(thick/dash) and the model after EM iterations (thick/dpli

tive glottal waveform estimate is also closer to the origithan
initially. Figure 5 shows a close temporal and spectral canspn
of the original and the resynthesized signal.

The resulting output may not sound exactly the same as the
original, which is the price of using an economical parame&p-
resentation. What we gain, however, is the flexibility to rifypd
the parameters to generate new sounds at will, which is blua
for speech synthesis and music applications. A breathyorecs
the original sound has been convincingly synthesized byeas:
ing the OQ values and the variance of the synthesized aspirat
noise. The generation of aspiration noise follows the madlel
[2]. It consists of a burst of noise right after the GCI, siiapg a
Hann window, and additive background noise. One shortfallio
model is that, within a frame, the process noise variandmett
is attributed to both noises. To determine the proper vaeaa
post processing extraction is necessary. Alternativedycan split
the proportion of the estimated variance givenghybetween the
two noises appropriately accordingdg, < (1 — 0Q) - o&p +
0Q - 0} p, WherecZ 5 is the actual variance of the noise right
after the GCI, mostly occupying the closed-phase, @4 is that
of the aspiration noise thereafter, mostly evident durivgdpen-
phase. Note that, howevej,, tends to be an over-estimation of
the aspiration noise because of the inaccuracy of the ditisrm
tic model itself in modeling the sound. A switching statecgpa
model where the noise characteristic switches at some tigtarit
could also be useful as a future improvement. A challenge als
lies in female voice estimation due to generally more bieatis
with possibly no closed-phase in the glottal waveform ad el
the higher pitch which creates difficulty in the vocal traltefies-
timation. An extension of the source model will be neededeal d
with spectral zeros in nasal sounds and to capture smalltiiut s
rather informative residue for a more faithful reconstiaret

4. CONCLUSION

In this paper, an iterative method to estimate voice pradnct
model parameters from a natural voice recording based diNhe
algorithm and Kalman smoothing was presented. Under higR SN
circumstances, the parameter estimates give a resyrebesozind
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Figure 5:The time-samples (top) and spectra (bottom) of the origi-
nal (dots) and the synthesized signal (solid). The speciswfiset
for clarity.

that is natural while also allowing for modification and affiat
coding.

5. REFERENCES

[1] D. H. Klatt and L. C. Klatt, “Analysis, synthesis and pepe
tion of voice quality variations among female and male talk-
ers,”J.Acoust.Soc.Anvol. 87, no. 2, pp. 820-857, 1990.

H. L. Lu, “Towards a high quality singing synthesizer twit
vocal texture control,” Ph.D. dissertation, Department of
Electrical Engineering, Stanford University, 2001.

M. Frdhilich, D. Michaelis, and H. W. Strube, “SIM-
simultaneous inverse filtering and matching of a glottal flow
model for acoustic speech signald,Acousti.Soc.Amvol.
110, no. 1, July 2001.

P. R. Cook, “Identification of control parameters in ati@r-
latory vocal tract model with applications to the synthexdis
singing,” Ph.D. dissertation, Department of ElectricagEn
neering, Stanford University, 1991.

S. Gannot, D. Burshtein, and E. Weinstein, “Iteratived an
sequential Kalman filter-based speech enhancement algo-
rithms,” IEEE Trans. on Speech and Audio Processitif8.

[6] W. Ding and H. Kasuya, “A novel approach to the estima-
tion of voice source and vocal tract parameters from speech
signals,” inICSLP, 1996.

K. Lee, B. Lee, I. Song, and S. Ann, “Robust estimation of
AR parameters and its application for speech enhancement,”
in ICASSR 1992.

[8] G. Fant, J. Liljencrants, and Q. Lin, “A four-parameteode!
of glottal flow,” STL-QPSR, Tech. Rep., 1985.

[9] J. D. Markel and A. H. Graylinear prediction of speech
Springer-Verlag, 1976.

G. Fant, “The voice source in connected spee@ptech
Communicationno. 22, 1997.

(2]

(3]

(4]

(5]

(7]

(10]



