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ABSTRACT

In this paper, a joint parameter estimation of the derivative glottal
source waveform and the vocal tract filter is presented whereas-
piration noise and observation noise are taken into accountwithin
a state-space model. The Rosenberg-Klatt glottal model is used in
conjunction with an all-pole filter to model voice production. The
EM algorithm is employed to iteratively estimate the model param-
eters in a maximum-likelihood sense, utilizing a Kalman smoother
in the expectation step. The model and estimator allow for im-
proved estimates of model parameters for resynthesis, yielding an
output which sounds natural and remains flexible for modification,
a desirable property for expressive vocal synthesis.

1. INTRODUCTION

A source-filter model for voice production has been studied and
used in a number of speech synthesizers, for example, the KL-
SYN88 [1]. A good parametric model of a glottal source offersa
parsimonious representation of the sound for efficient coding and
flexible resynthesis, as well as providing features for manyiden-
tification applications. While most speech synthesis research has
provided us with good voice production models, as well as meth-
ods for accurate estimations of model parameters [2][3][4], few
have considered automatic estimation of model parameters explic-
itly when noise is present. In the speech enhancement research
arena, however, statistical techniques for parameter estimation and
speech enhancement in noise are well known. Examples of this
type of speech enhancement based on various voice models are
[5][6][7]. Algorithms that consider uncertainty due to noise and
a good model of voice production should allow for more accurate
identification of parameters. Its potential applications are in voice
synthesis and coding of a vocal sound recorded in real life where
noise may be present or the recording equipment is not entirely
noise-free.

In this paper, we focus on the parameter estimation aspect for
a reconstruction of a voice from recording, possibly under mod-
erately noisy conditions, rather than general denoising. The state-
space model is used to model the voice production and the observa-
tions obtained at the microphone. An Expectation-Maximization
(EM) algorithm has been used in speech enhancement applica-
tions before [5]. Here, we extend beyond most Kalman filtering-
based enhancement algorithms by modeling the source input us-
ing a parametric form of Rosenberg-Klatt (RK) [1], instead of
just white noise or a pulse train as used in [5]. The RK glottal
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Figure 1:Voice production model

pulse model is a simplified derivative version of the more general
and popular Liljencrants-Fant (LF) model [8]. It fits well into the
linear state-space formulation and captures the characteristics of
three different modes of voice: breathy, normal and pressed. This
voice production model and its motivation follow closely the work
by Lu [2] where convex optimization is used to jointly estimate the
vocal tract filter and the glottal source. Here, we instead employ
a statistical model to include uncertainty due to observation noise.
In the remainder of this paper, we describe the model employed
and analysis/resynthesis in terms of it, followed by some results
and discussion.

2. EM AND KALMAN SMOOTHING PARAMETER
ESTIMATION

2.1. Model and Analysis

Voice production is modeled as a linearly separable source input
cascaded with an all-pole vocal tract filter, as shown in Figure
1. The source consists of the derivative glottal waveformg(n)
summed with some aspiration noisev(n). The lip radiation, mod-
eled as a differentiator, has been folded into the glottal pulse wave-
form to give this derivative, assuming linearity. The modelas-
sumes there is no source and tract interaction or any form of non-
linearity. It is also only applicable to non-nasal voice. The model
for the derivative glottal waveform is the Rosenberg-Klattmodel
which can be expressed as follows:

g(n) =

(

2agn/fs − 2bg(n/fs)
2, 0 ≤ n ≤ T0 · OQ · fs

0, T0 · OQ · fs ≤ n ≤ T0 · fs

(1)

ag =
27 · AV

4 · (OQ2 · T0)
(2)
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Figure 2:Two periods of Rosenberg-Klatt derivative glottal wave-
form model showing the period (T0), glottal closure instant (GCI),
closed-phase (CP) and open-phase (OP)

bg =
27 · AV

4 · (OQ3 · T 2
0 )

(3)

whereT0 is the fundamental period,fs is the sampling fre-
quency,AV is the amplitude parameter, andOQ is the open-
quotient of the glottal source. Note that spectral tilt is not explicitly
modeled here, unlike in KLGLOTT88 [1] or [2]. An example of
the waveform is shown in Figure 2.

We observey(n) at the microphone which is assumed to be the
sum of the vocal sound and a stationary additive white Gaussian
noise. Modeling the vocal tract as an all-pole filter of orderP ,
the voice production model is similar to Lu’s [2]. The system’s
state-space model representation is as follows:

State-Space Formulation of Lu’s model

xm(n + 1) = Amxm(n) + Bmum(n) + vm(n) (4)

ym(n) = Cxm(n) + w(n) (5)

vm ∼ N (0, Qm), w ∼ N (0, R)

xm(n) =
ˆ

xm(n) xm(n − 1) · · · xm(n − P + 1)
˜T
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, otherwise

Qm =

»

qm 0

0 0

–

C =
ˆ

1 0 · · · 0
˜

wherem is frame index, moving from one glottal period to an-
other, andn is the sample index within a frame, ranging from1 to
Nm for framem. We consider a period from one glottal closure
instant (GCI) to the next so equation (1) is modified to have an
integer offsetnc, which is the starting index of the glottal source
open-phase.nc therefore determines the open quotient (OQ) such
thatOQ = (T0−nc)/T0. The variances of process noise at frame
m, vm, and global observation noisew areqm andR, respectively.
Ideally, if the deterministic model of the voice productionis accu-
rate, vm(n) can be thought of as the aspiration noise, which is
nothing more than a residual or model error here.

At each iteration, expectation of the likelihood followed by
maximization (by finding ML estimates of the parameters) are
performed. The E-step is achieved by computing the sufficient
statistics of the posterior distribution,P (X|Y, U, θ) using Kalman
smoothing, whereX is the (hidden) clean speech,Y is the relevant
set of observations,U is the input, andθ is the set of all model pa-
rameters. LetDm =

ˆ

a1,m · · · aP,m ag,m bg,m

˜T
. Dur-

ing the M-step, the parameters are updated in turn as follows:

D
(new) =

ˆ
PNm

n=2 J(n)
˜

−1
Nm
X

n=2

»

v1
1(n)

x̂(n)u(n)

–

(6)

q(new) =
1

Nm − 1

Nm
X

n=2

„

V
(1,1)
0 (n)−2DT

»

V1(n)
u(n)x̂T (n − 1)

–

+ D
T
J(n)D

«

(7)

R(new) =
1

PM

m=1 Nm

M
X

m=1

Nm
X

n=1

ˆ

y2
m(n) − C · x̂m(n)ym(n)

˜

(8)
where

J(n) =

»

V1(n) x̂(n − 1)uT (n)
u(n)x̂T (n − 1) u(n)uT (n)

–

(9)

The frame index is dropped when there is no confusion and all
parameters on the right hand sides are current estimates.V0(n)
and V1(n) are the covariances given by the Kalman smoother,
v1

1(n) is the first column ofVT
1 (n) andV

(1,1)
0 (n) is the top-left-

corner entry ofV0(n), i.e.,

V1(n) = 〈x(n)xT (n − 1)〉 (10)

V0(n) = 〈x(n)xT (n)〉 (11)

where〈·〉 denotes the posterior averages from the Kalman smoother
from the E-step. The iteration is repeated until convergence.

Unfortunately, the OQ-related parameter,nc, is nonlinear with
respect to the error minimized; we therefore need to do a grid
search. Providing that its initialization value is close tothe so-
lution, only a few points in the vicinity of the current estimate are
needed for calculation. However, it is important to say thatfor a
given set of current estimates of other parameters at one iteration,
even a grid search onnc might not lead to an eventual globally
optimal solution. A way to ensure optimality is to start by opti-
mizing other parameters for all values ofnc and then pick the one
that gives the highest likelihood at convergence. This method is,
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however, computationally expensive. We therefore contendwith
trying to get good initialization and only make sure the likelihood
function increases at each iteration doing grid search for the cur-
rent ML estimates of other parameters. Keeping the likelihood
function increasing, without actually maximizing it, still guaran-
tees EM’s monotonic convergence.

The M-step of AR filter coefficients estimation is equivalentto
the covariance LPC method as a result of maximizing conditional
likelihood [9]. The stability is therefore not guaranteed.Hence,
we check for unstable poles at each iteration and reflect themback
inside the unit circle. Instability, however, rarely happens unless,
for example, the noise has very large spectral peaks. Another ad-
vantage in using EM is that constraining parameters can be done
without sacrificing monotonic convergence behavior, as long as at
each constraining, the likelihood is ensured to be increasing. We
can therefore constraina ≥ 0 andb ≥ 0, as well as the physical
range of OQ and perform a stability check on the vocal tract filter.

At each iteration, the glottal closure instant (GCI) for thepur-
pose of model fitting is also updated by searching for a minimum
peak in the interested period ofg(n). While GCIs are assumed to
be available, they need not be very accurate. The algorithm can
refine all parameters, including the GCIs, to fit the observation.

After convergence, all parameters are smoothed using a nar-
row Hann window smoothing kernel, with AR coefficients con-
verted to reflection coefficients before smoothing to preserve sta-
bility. Non-smoothed parameters otherwise cause audible artifacts.
The resynthesis employs a lattice filter whose reflection coeffi-
cients change at each glottal closure instant.

2.2. Algorithm Initialization

Just like any other ML method, the EM algorithm has the risk of
converging to a suboptimal local maximum. Therefore, good ini-
tialization is crucial for global convergence. Conventional LPC
can be used for initialization of the AR coefficients under high
SNR conditions. The OQ can be estimated from the following ex-
pression given by Fant [10]

H1 − H2 = −6 + 0.27 · exp(5.5OQ) (12)

whereH1 andH2 are the spectral amplitudes of the first and sec-
ond harmonics. Alternatively, we can do exhaustive search for the
best OQ in a few frames and use it as an initial value for adja-
cent frames. Figure 3 shows the prediction error surface which has
an inverse relationship with the likelihood when all other param-
eters, except OQ, are at the true values for a synthetic inputwith
AV = 0.001 and the AR coefficients are taken from LPC analysis
of a frame of sound /a/. Where the range towardsOQ = 1 is not
shown in the top-left figure, the exponential trend continues. The
figure shows that OQ should be over-initialized if in doubt. Given
that physically from experimental studies [1],0.4 ≤ OQ ≤ 1, a
grid search only in that range suffices to bring the likelihood up.
Also note that the error curve is convex in that interval for these
examples, implying a gradient method could be reliably used.

The presented ML estimation is not based on perception. There-
fore, the internal LPC step will result in equal weighting across
all frequencies, and high-frequency formants, which are impor-
tant to perception, are not neccesarily modeled and could bemiss-
ing. This is especially important in resynthesis since our deriva-
tive glottal source model has an inherent -6dB/octave roll-off. To
remedy this, we obviously can do preemphasis before starting the
iteration. However, this is not advisable when there is significant
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Figure 3:Prediction error surface for differentOQ values, all for
F0=100Hz, except for the bottom right, where F0=200Hz

noise present. By doing so, observation noise is also no longer
white, unless the noise can be assumed to have the same spec-
tral roll-off characteristic. Alternatively, we can do estimation of
the AR coefficients using more appropriate weighting, like warped
frequency axis transform on the data, while making sure thatthe
likelihood is still increasing. Also, some extrapolation or biasing
will be needed to recover formants that are buried under noise. In-
corporating these features within the presented iterativeframework
is the subject of further investigation.

3. RESULTS AND DISCUSSION

The algorithm has been applied to a male singing voice with vi-
brato and tremolo, singing /a/ at a fundamental frequency around
123 Hz. The sampling rate is 16 kHz. We first test on the clean sig-
nal applying preemphasis, using filter-orderP = 20. The resyn-
thesis sounds natural, and similar, though not exactly the same as
the original. A slightly noisy sound, with white Gaussian noise
added to give SNR=20dB, was also tried, using preemphasis and
careful monitoring. The result is a similar sound that mightsound
less natural due to inaccuracy and smoothing of parameters.How-
ever, in contrast to general speech enhancement where the en-
hanced output is taken from state estimates given by Kalman filter-
ing, it is completely free of musical noise. Wihtout preemphasis,
the algorithm is more stable due to stable all-pole filter estimates.
The output sound is still natural but does not sound as brightas
the original. Using initial preemphasis does not seem to do as
much harm when pink noise (roll-off -3dB/octave) is added in-
stead at the same level of SNR=20dB and the resynthesized sound
is excellent compared to the original. All results are available at
http://ccrma.stanford.edu/˜pj97/WASPAA05/waspaa05demo.html

From listening, the sound generated using the vocal tract filter
estimates after iteration sounds more accurate (closer to /a/) than
using the initial noisy estimates. The median Itakura-Saito spec-
tral distance between the all-pole filter coefficients obtained from
clean signal and from iterations decreases significantly after a few
iterations for all noisy cases above. Figure 4 shows that thederiva-
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Figure 4:The derivative glottal waveform,g(n), the initial model
(thick/dash) and the model after EM iterations (thick/solid)

tive glottal waveform estimate is also closer to the original than
initially. Figure 5 shows a close temporal and spectral comparison
of the original and the resynthesized signal.

The resulting output may not sound exactly the same as the
original, which is the price of using an economical parametric rep-
resentation. What we gain, however, is the flexibility to modify
the parameters to generate new sounds at will, which is valuable
for speech synthesis and music applications. A breathy version of
the original sound has been convincingly synthesized by increas-
ing the OQ values and the variance of the synthesized aspiration
noise. The generation of aspiration noise follows the modelin
[2]. It consists of a burst of noise right after the GCI, shaped by a
Hann window, and additive background noise. One shortfall of our
model is that, within a frame, the process noise variance estimate
is attributed to both noises. To determine the proper variance, a
post processing extraction is necessary. Alternatively, we can split
the proportion of the estimated variance given byq̂m between the
two noises appropriately according tôqm ∝ (1 − OQ) · σ2

CP +
OQ · σ2

OP , whereσ2
CP is the actual variance of the noise right

after the GCI, mostly occupying the closed-phase, andσ2
OP is that

of the aspiration noise thereafter, mostly evident during the open-
phase. Note that, however,q̂m tends to be an over-estimation of
the aspiration noise because of the inaccuracy of the determinis-
tic model itself in modeling the sound. A switching state space
model where the noise characteristic switches at some time instant
could also be useful as a future improvement. A challenge also
lies in female voice estimation due to generally more breathiness
with possibly no closed-phase in the glottal waveform as well as
the higher pitch which creates difficulty in the vocal tract filter es-
timation. An extension of the source model will be needed to deal
with spectral zeros in nasal sounds and to capture small but still
rather informative residue for a more faithful reconstruction.

4. CONCLUSION

In this paper, an iterative method to estimate voice production
model parameters from a natural voice recording based on theEM
algorithm and Kalman smoothing was presented. Under high SNR
circumstances, the parameter estimates give a resynthesized sound
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Figure 5:The time-samples (top) and spectra (bottom) of the origi-
nal (dots) and the synthesized signal (solid). The spectrumis offset
for clarity.

that is natural while also allowing for modification and efficient
coding.
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