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ABSTRACT 
A constrained iterative method for harmonic source parameter es- 
timation is proposed based on an EM algorithm with an intent for 
harmonic source separation. The problem of coinciding partials 
and interference among them in general is mitigated by the con- 
straints on the “weak” partials on the stronger ones of the same 
harmonic sourcp. A useful scheme to determine the weakness of 
a partial is proposed. The constrained iteration is shown to give 
more accurate estimates of the sinusoidal parameters which results 
in good source separation even in most cases of highly overlapping 
spectra. 

1. INTRODUCTION 

Sound source separation based on sinusoid modeling is useful in 
a recovery of vocal or musical instruments from a single channel 
record. It relies on accurate estimations and tracking of the param- 
eters in the sinusoidal model, namely, the frequencies, the ampli- 
tudes and the phases [I]. A lot of work has been done on such 
parameter estimation in the case of a single partial. However, with 
more than one partials, the estimation is not as straightforward due 
to the interference among the components. Another difficulty is in 
estimating frequency parameters which is non-linear with respect 
to the observed signal. An iterative parameter estimation is pro- 
posed in [Z] by iterating through updated estimates of amplitude- 
phase and the frequencies in tum. A complex linearization of the 
Fourier transform of a windowed signal is employed to circum- 
vent the problem of non-linearity in the frequency. Apart from 
having to deal with an inverse of a complex number matrix which 
is sometimes ill-conditioned when some partials are close by, the 
processing window also has to be restricted to a non-sidelobe one. 
In this paper, an alternative iterative method is then proposed. It is 
based on an EM algorithm developed in [3] for general parameter 
estimations.of superimposed signals, extended to an estimation of 
amplitudes, frequencies and phases of a single mixture of multiple 
harmonic sources. The algorithm attempts to find the maximum- 
likelihood estimates of those parameters. Its attractiveness lies in 
the ability to decouple the problem into components which then al- 
lows for separate optimization on each set of partial‘s parameters. 
However, it often gets confused when some of the partials are co- 
inciding or become close by in frequency and gives poor estimates 
as a result. Fortunately, the harmonic structure of each source al- 
lows us to.pool information among them [XI. Constraining the 
“weak partials on the stronger ones can then give more accurate 
results. To decide which partials are weak and hence not so trust- 
worthy, a measure of its interference by other partials can be used. 
The accuracy of estimations in various cases is reported and used 
in source separation. 

2. EM ITERATIVE ESTIMATION 

2.1. Signal model 

The observed signal is modelled over a processing frame t = 
O , l ,  . . .  T -  1 a s  

3 k , j  = U k , j c o s ( 2 n  f k , j t  + 6 k . j )  (2) 

where o k , j  = [ a k , j ,  f k , ; ,  &;I, K is the number of sources, H ( k )  
is the number of harmonic partials belonging to source k, u k , j ,  j k , j  

and 4 k . j  are the amplitudes, the frequencies and the phases associ- 
ated with them. v(t) is assumed to be real additive white Gaussian 
noise. The sources are assumed to be harmonic so that each har- 
monic frequency of each source is approximately an integer mul- 
tiple of the source fundamental frequency fo. The indexing of 
is set to reflect the convention for harmonics. It is assumed that 
the sinusoidal parameters are stationary over the frame. This is ac- 
ceptable for signal with slowly varying parameters andlor the use 
of short processing frame. 

2.2. EM algorithm on superimposed signals 

EM algorithm is widely used to estimate parameters from incom- 
plete data [4]. With an apprporiate choice of the complete data, 
the parameters can be estimated by maximizing the marginalized 
expectation of the likelihood over the missing components. The 
current estimates are then used to find the conditional expectation 
and the process is reiterated. In the problem of OUT interest, the 
incomplete data is the observation y(t) whereas the complete data 
can be chosen as + k ( t )  where y(t) = E,“=, ~ , H _ c ; ) - l  % k , j ( t ) ,  

Z k , j ( t )  = S k , j ( t ) + V k , j ( t ) .  Also,u(t) = E,”=, C ~ ~ ~ ) ! o L ” V k , j ( t )  
is an arbitrary decomposition of the noise, For convenience, all 
the noise campaenents are assumed to be statistically independent, 
zero-mean Gaussian with variance 0 2 , ~  associated with each of 
them where 0 2 , ~  = 4 k . j ~ ~  is the fraction of actual noise power 
assigned to the component. 

With some modification from [3],  the EM iterative steps be- 
come 

AI i th  iteration, 
E step : for k = 1 , 2 ,  ..., K and for j = 0,1,  ..., H ( k )  - 1, com- 
pute 
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squares. The frequency update at the i t h  iteration is 

Ism L 

M step : fo rk  = 1 , 2 ,  ..., K and f o r j  = 0,1, ..., H ( k )  - 1 

The decoupling of individual components results from the statisti- 
cal independence of the decomposed noise components. The like- 
lihood maximization step corresponds to a least squares problem 
when the noise is Gaussian, to be carried out on each compo- 
nent independently. This can reduce the computational complexity 
greatly especially when matrix inverse or parameter searching will 
be involved. The EM algorithm is also gauranteed to converge to 
a local maximum, though, as in any iterative method, good ini- 
tialization is needed to ensure the global maximum. Despite the 
much reduced dimension of the problem space, solving for b’k,j 
is still not trivial. However, the theory of conditional EM algo- 
rithm(ECM) [SI allows the M-step to be done in many small steps, 
conditioning on other parameters being fixed while retaining the 
convergence property of the original EM. The amplitude-phase 
and the frequency of the partial are hence estimated in separate 
steps. 

Note that P k , j  is the fraction of noise power assigned to the 
component set arbitrarily subject to E r , ,  4 k . j  = 1. It is possible 
that we set them to reflect the extent of noise in each component 
to assist in adaptation. Unless there is a scheme to assign them 
appropriately, they are set to be equal for faimess. 

2.3. Amplitude-phase estimation 

Dropping all subscripts on considering a single partial, let 

A*=* ( 5 )  

where x is a frame of estimated partial of length T, A = 
[c ,s] and c and s are columns of cosine and sine values for t = 
0, ..., T ~ 1 of the current frequency estimate respectively. The 
parameter vector 8 = [a cos Q ,a sin $IT. w e  can solve for ampli- 
tude and phase by simple linear least squares 

8 =  ( A ~ A ) - ’ A ~  (6)  

and then solve for a and 4 from 

a = 48; + 8;, Q = arctan (ffZ/B,) (7) 

Assuming the adaptation should be smooth, phase unwrapping 
is used to make sure that the arctan function gives the wanted 
value. 

2.4. Frequency estimation 

Because of non-linearity of the frequecy with respect to the signal, 
a close-form solution is not available. A gradient descent is em- 
ployed as a way to get close to the minimizing value of the least 

The two steps minimization gives a monotonic decrease in sum 
squared errors and hence a monotonic increase in the likelihood. 
Though the iteration on the frequency estimate may not give an 
exact minimizer, depending on the learning rate and number of 
iterations, the generalized EM theory states that convergence is 
still gauranteed as long as the likelihood is made monotonically 
increasing. The algorithm is therefore very robust with respect to 
convergence. It can be iterated until some specific convergence 
criterion is met. 

3. HARMONICALLY CONSTRAINED EM 

Despite an independent treatment on each partial, it has been found 
that the algorithm given above does not do well when some par- 
tials have the same frequency or are very close by. It tends to 
spread the amplitude among the partials incorrectly which might 
have been caused by the use of equal p. The frequency estimates of 
the partials involved are also poor which can in turn bring down the 
performance on other partials. This situation occurs frequently in 
Western music where integer ratios of pitch intervals are common 
or in a rich polyphonic spectrum. In general, solving for nearly 
coinciding partials is difficult but with a harmonic structure avail- 
able, reasonably good recovery is possible. The “weak pmials 
obscured by other neighbouring partials can be harmonically con- 
strained in relation to other “strong” ones of the same source dur- 
ing each iteration. If there are enough strong partials available, the 
constraints will usually give better overall estimates than letting 
the algorithm search for them freely. How to define “strong” and 
“weak” is considered in the next section. 

3.1. Credit assignments 

There are many ways to assign credibility or trustworthiness to a 
partial. One useful scheme is to look at the position of the par- 
tial in the spectrum and its amplitude. If it is close to a larger 
partial. its trustworthiness is low. On the other hand, if it is rela- 
tively larger and far from others, its estimate from the algorithm 
should be trustworthy and hence can be used as a reference for 
other weaker ones of the same source. The score of each partial, 
motivated by spectral interference, can be calculated as 

where H is the total number of partials involved and i i ~ , ~  = 
&,.,,/ xvk,, &,; is the normalized amplitude. The function g() 
is appropriate spectral envelope approximation of the processing 
window transform. For example, for a rectangular window, we 
may use, 
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where C is a suitable scaling. C = 3 gives close approximation 
to the sine envelop in the mainlobe while a ensures a continu- 
ity from the main lobe part to the sidelobe l/f roll-off envelope 
approximation. f’ = f 8 /T  is an appropriate boundary where 
l/f starts to dominate. A similar expression can he obtain for 
other window transform by suitable scaling hut the closeness may 
not he crucial as long as the general trend of interference is well- 
represented. The envelope weighted by the relative amplitude re- 
flects how much the peak of other partials will affect the peak of 
the partial of interest in the spectrum while ignoring the side-lobe 
oscillation. Consequently, it reflects the trustworthiness of the par- 
tial from estimation, especially when the initial estimation is likely 
to involve a peak picking process. Perfectly overlapping of peaks 
causes bad credit score but the larger one is still allowed to have 
a relatively good score. This is desirable since we do not want to 
throw away too much information. Similar weighting scheme e.g. 
exponential weighting should work as well but weighting in dB 
scale magnitude should not be appropriate since very small ripple 
will be over-emphasized. Besides, the interference is additive in 
linear scale, not multiplicative. 

The decision rule for weak partials may vary. A threshold 
maybe set between zero and one or in relation to the maximum 
of the set. Often, it is found that working with “distrust” defined 
as dk, ,  = 1 - e k , ,  is more amenable to analysis. The decision 
rule that is found to he effective is then to decide that a partial 
is weak when its distrust score, d, is more than twice of the low- 
est. The number of partials of the source can also be taken into 
account. Rejecting too many partials as weak can reduce its ro- 
bustness while keeping too many not so strong can also bring the 
performance down. Clearly, there must he at least one decidedly 
strong partial per source to he successful. 

3.2. Constrained estimation of weak partials 

Now that it has been decided which panials are strong enough to 
take part in the iteration, during each EM iteration, the weak partial 
j of source k will be updated according to. 

where SI is the set of strong partials of source k. The weighting 
w,(fm) is a function of fm. If the frequency estimates are un- 
correlated, the minimal variance solution for the weighting would 
be 

where a;- is the variance of the estimator fm. This will give 
a? < j2min(o ;m/mZ) .  It also indicates that good high fre- 
quncy harmonic estimates will push down the hound, ignoring the 
correlation, hecuase of the division by m. Unfortunately, the es- 
timates are obviously positively correlated so the bound is in fact 
higher. Also, because of the changing statistics of the estimator 
from one iteration to another, their variances are hard to estimate, 
we may then he content with the credibility score, c, already oh- 
tained, which reflects the extent of the variance of each partial es- 
timator in a similar way. Hence, use 

f i  

(13) e; 
wj(fm)= CmCskCm 

3.3. Initial estimation 

The convergence to the correct global solution relies on a good ini- 
tial estimation. Peak picking with pitch estimation can be used to 
find primary candidates of partials. Spurious peaks can he elimi- 
nated by comparing the height of the peak to its width and its near- 
est valley [l] .  The multipitch estimator proposed by Klapuri in 
[6] is suitable for determining the fundamental frequency of each 
souce since it focuses on the interval between peaks and hence can 
cope with many pitches co-existing. Its sub-band operation also 
makes it robust having averaged over different suhbands. Pitches 
obtained can he used as a guideline to organize the partials already 
detected into harmonic sources. To do so, the notion of harmonic 
concordance is adopted 171. The measurement of harmonic dis- 
tance of two frequncy compoents is given hy 

where a and bare integers within the possible range given the low- 
est frequency in the observed mixture. The starting references of 
the group are the fundamentals. If missing, other strong compo- 
nents may be used. The rest of the partials are then considered one 
by one for the minimum total harmonic distance from the partials 
already grouped to a particular source. If there is any amhigu- 
ity, that is, the difference of grouping a partial to one source than 
another is not large enough. others are grouped first and the am- 
higious partials will he revisited after the unambigious ones have 
been assigned. This will improve the chance of  grouping correctly. 
Also, if a harmonic of a source is missing, it is checked against the 
possibility of the component being assigned to the other source 
due to coincidence. In experiments, the initial estimation process 
is made sure to give reasonable estimates so that the errors do  not 
propogate. If the partials at an expected position are perfectly over- 
lapping, they are assigned the same parameter values for iteration. 

4. SIMULATION RESULTS 

A v c o u s  combinations of synthetically generated harmonic sources 
with stationary parameters are used in the experiments at the sam- 
pling rate of I6kHr. In all experiments, T=256 and zero-padding 
to 1024 is employed for FFT operation prior to peak detection. 
The maximum number of iterations used is 100, showing rela- 
tively slow convergence compare to the algorithm in [Z]. How- 
ever, extension to more partials is simple and the computational 
complexity increases linearly with convergence gauranteed as a re- 
ward. The iteration s tms  on a stronger source, decided by the sum 
of the score of their partials, and also on a stronger partial. The 
algorithm shows significant improvements over the initial peak 
picking estimations in all cases where initialization is g o d 1 1  also 
does better than unconstrained EM algorithm where all partials 
adapt freely. It is very robust to noise although a threshold effect 
is slightly apparent as common to many non-linear estimators as 
shown in Figure 1. Caution should he taken in interpreting results 
as curve-fitting algorithm used here should not he expected to do 
as well at high frequency as at low frequency while peak-picking 
process should be able to do equally well because of regular inter- 
val in the DIT bins. Mean absolute error is then represented with 
no normalization. It copes very well with coinciding and highly 
interfering partials. Unfortunately, hest performance depends on 
parameter and threshold adjustment, not to mention the number 
of iterations allowed. The credit assignment and decision rule is 
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Fig. 1. Top : the mixture spectrum, Bottom two : Mean abso- 
lute error of constrained EM estimations(so1id) compared to peak- 
picking(dash-dot) and unconstrined EM estimates(dash) in various 
SNR. Case of pitch=300 & 400 Hz with number of harmonics=lO 
& 8 respectively 

verified to work in obvious cases by inspection; the coinciding or 
nearby partials are ruled as weak. 

It should also be noted that a source with a moderate number 
of harmonics is more robust in estimation because of higher av- 
eraging while not too much overlapping. A stringent decision to 
pass a partial for strong can lead to bad results. Also, accurate 
amplitude estimates are much harder to obtain than the frequency, 
mnst notably when two partials are perfectly coinciding. Without 
any further constraint, the algorithm has no way of assigning the 
portion correctly. This is where the learning rate, p9 can become 
important. Unfortunately, amplitudes of harmonic sources do not 
necessarily have certain relationships as in frequencies, so con- 
straining may not be as effective. However, in this approach, none 
of the temporal cues available in real situation have been taken into 
account having considered only an estimation within a given frame 
of observation. The problem of coinciding partials can be further 
mitigated by the tracking of trajectories and the onset time can 
also help organize the partials into corrcct groups. Without tempo- 
ral context, harmonically constrained EM is unlikely to yield good 
amplitude estimates for coinciding partials though the frequencies 
can still be well-constrained as shown. 

To illustrate the capability in dealing with a real world signal, 
an example o fa  separation of a horn and a flute playing at different 
pitches is shown. The signal parameters change slightly over time 
as vibrato and tremolo but the estimates using a window length of 
about 40ms can give good estimates. Using additive synthesis re- 
construction from linearly interpolated parameters across frames, 
closely overlapped peaks in spectrum over a sampled frame are ob- 
tained as shown in Figure 2. However, the third peak in the second 
source can he seen missing due to coincidence with the partial in 
the other source which gets all of the amplitude proportion, indi- 
cating occasional problem. 

5. CONCLUSION 

An alternative iterative method for sinusoidal parameter estimation 
of a mixture of harmonic sources is proposed. The harmonic struc- 

Fig. 2. From top to bottom, the spectrum of the mixture of a 
horn and a flute and the spectra of the onginal(solid) and estimated 
sources(dash) overlaid 

ture allows for good estimation of the weaker partials constrained 
on the stronger ones based on the trustworthiness of each partial. 
The trustworthiness score can be calculated from the weighting 
of interfering spectral envelope. It is shown to give much more 
accurate estimates of stationary mixtures. In the future, a non- 
stationary model can he considered and other possible weighting 
scheme,maybe perceptual, could be investigated. Also, the ampli- 
tude ambiguity of coinciding partial deserves more attention and 
an inclusion of temporal context should also be beneficial. 
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