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Abstract

While recording an ensemble of musicians, microphone cross-talk, or “bleed”, is considered a nuisance

by audio engineers. When two microphones pick up the same signal with a time delay, comb filtering

artifacts are present. An expensive solution to the microphone bleed problem is to use acoustic

isolation panels between musicians. Obviously, this is not feasible in a live setting. Simpler solutions

include using directional microphones with specific polar patterns to pick up radiation from a desired

direction and using the close-miking technique where microphones are placed at a distance of 5 -

50 cm from the sound source. Interference can become significant in such cases due to the effect of

nearby strong reflective surfaces. The complexity lies in the fact that there is usually an arbitrary

number and distribution of instruments and microphones, and results are influenced by the room

acoustics of the studio where the ensemble is recorded.

In this thesis, I propose statistically optimal estimators to cancel microphone bleed offline in the

mixing and production stage. First, a calibration stage is proposed, where one instrument is played

at a time and recorded by all the microphones. This single-input, multiple-output (SIMO) system

is used to estimate an approximate relative transfer function matrix, which represents the acous-

tic path from each source to each microphone and encodes the room response, as well as the mic

directivity and source radiation patterns. A convex cost function is derived in the time-frequency

domain that simultaneously optimizes the sources and the relative transfer function matrix, which

is assumed to be time-invariant. It is shown that minimizing this cost function gives the Maximum

Likelihood (ML) estimate when the microphone signals are assumed to be normally distributed. The

ML estimator is extended to include a priori statistics of the sources, and the Maximum Aposteriori

Probability (MAP) estimator is derived. The proposed methods are evaluated against a state-of-the-

art Multichannel Wiener Filter based algorithm on a simulated dataset of string quartet recordings

in a shoebox room, and on a drum-kit recorded in the CCRMA recording studio. Subjective re-

sults show that cross-talk cancellation is achieved while maintaining the perceptual quality of the

separated sources.
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Chapter 1

Background

1.1 Introduction

In a common recording scenario, an audio engineer might want to record a string quartet. So, they

mic each instrument in the quartet and record the musicians playing together. In this session where

all the performers play together, there is too much “bleed” or cross-talk in the microphones, for

e.g., the microphone on the viola also picks up the cello and the violins, especially if the studio

is small and not sound-proof. Now, the engineer must record each instrument separately, because

each instrument needs its own mix — the viola may be too screechy and higher frequencies need

to be filtered out, the cello may need a different kind of compression than the violin. However, we

lose much of the interaction and coordination among the performers when they play in isolation.

Research in neuroscience shows that synchrony among musicians playing together has a significant

effect on their performance [3].

Let us imagine the same situation in a live concert setting. In this case, the recording engineer

does not have the luxury to record each musician separately. They usually deploy directional micro-

phones with specific polar patterns which pick up sound from a desired direction. Another “hack”

is to close-mic the sources, i.e, each mic is placed approximately 5− 50 cm from the source, so that

it picks up radiation primarily from the source of interest. Although this does not eliminate leakage

completely, it reduces it significantly. In this thesis, we focus specifically on reducing cross-talk in

close-microphone recordings.

Similarly, in conferences and podcasts, multiple speakers may speak simultaneously. Each mi-

crophone picks up the primary speaker, as well as cross talk from other speakers plus background

noise. It is desirable to cancel this cross talk as it affects speech intelligibility. Both of the above

scenarios share a common objective — to get rid of interfering sources from the primary source.

As opposed to a linear mixture of sources, we have a convolutive mixture, where each mic picks up

sources convolved with the acoustic path. It is a well known Fourier theorem that convolved signals

1
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in the time domain become multiplicative in the frequency domain, which is why most existing

algorithms work in the time-frequency domain with the short-time Fourier transform (STFT). One

common method is to represent the acoustic paths with FIR filters, estimate the filter coefficients

with adaptive or statistical techniques, and invert them to recover the sources separately.

Most common issues that arise in close microphone interference rejection include the effect of

room acoustics and the ratio of the number of sources to the number of sensors. Most algorithms

assume the number of mics to be equal to the number of sources — this is the determined case.

Typically, the underdetermined case (fewer sensors than sources) is the most complicated. The

overdetermined case is more common in recording scenarios, where multiple mics can be used to

record the same instrument. The placement of mics and sources is also crucial to the performance of

these methods. Any alteration in the location of mics or sources changes the acoustic path (hence,

the filter coefficients). The acoustic transfer function also varies with fluctuations in the temperature,

pressure and humidity of an acoustic space, and also with the movements of the musicians. The

trade-off between leakage reduction and audible distortion also remains an open research problem.

This thesis derives statistically optimal estimators for the sources and acoustic transfer functions

for each source-microphone pair in a multichannel close-microphone recording setup. The standard

method [4] uses a Wiener filter (the statistically optimal Minimum Mean Squared Error estimator)

to do this, and approximates the acoustic path from a source to a mic with a scalar gain and delay

term. However, this is an oversimplification since strong early reflections from the room significantly

impact microphone leakage [5]. In this thesis, we derive the maximum likelihood (ML) and maximum

aposteriori probability (MAP) estimators for both the source and the acoustic transfer functions for

each mic-source pair. For each estimator, we setup a convex objective function which converges to

the global solution in a few iterations. We work in the time-frequency domain where we have a

linear mixture of the sources and noisy initial measurements of the time-varying acoustic transfer

functions, which we get from a calibration stage, where each performer plays their instrument while

the others are silent. This is a practical assumption since it is common-practice to do a ‘sound-check’

of each microphone before recording.

The proposed estimators are compared against the state-of-the-art Multichannel Wiener filter

estimator in two different scenarios — a string quartet in a virtual shoebox room and a drum kit

recorded in a studio. Subjective and objective tests are conducted to compare the proposed methods

against the state-of-the-art Wiener filter cross-talk canceler. The results show that the proposed

methods successfully achieve interference cancellation while preserving the perceptual quality of the

target signal.
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1.2 Multichannel source separation methods

Broadly speaking, there are three categories of algorithms to achieve the desired result — blind

source separation where each of the sources can be recovered individually, beamforming with micro-

phone arrays which focuses on picking up signals from a desired direction only, and adaptive noise

cancellation, where the interfering sources act as non-stationary noise that has to be eliminated.

Each of these methods has its advantages and shortcomings.

Blind source separation does not require any a priori knowledge about the sources and assumes all

the sources in the mixture to be statistically independent. The W-disjoint orthogonality criterion has

to be satisfied, i.e., time-frequency bins cannot have overlapping sources. Two functions, s1(t) and

s2(t), are W-disjoint orthogonal if the supports of their windowed Fourier transforms are disjoint, i.e.,

s1(ω, τ)s2(ω, τ) = 0 ∀ω, τ [6]. Moreover, with the added effect of reverberation, BSS methods have to

estimate filter coefficients of the order of thousands, which leads to speed and convergence problems.

Furthermore, there are scaling and permutation issues, such as in Independent Components Analysis

[7].

Beamforming techniques require microphone arrays with specific geometries. In beamforming the

filter coefficients are optimized to produce a spatial pattern with a dominant response for the location

of interest. Adaptive beamforming shapes the filter coefficients such that the response is minimized

for the positions of interfering signals. In multipath or reverberant environments, however, the

interfering signals may reach the sensor array from many directions, and so the optimization often

alters the response for the region of interest, thus distorting the signal.

Adaptive noise cancellation methods adaptively tune the time-varying weights of the noise can-

celling filter. They typically require a reference of the noise signal which has to be correlated with

the noise corrupting the desired signal. In close microphone recordings, this is usually available since

there is a microphone dedicated to each instrument/speaker. However, the reference noise signal is

corrupted with the desired signal itself, which degrades performance [8]. Additionally, the noise is

assumed to be broadband and its statistics are either known or need to be estimated.

Out of these three categories, noise cancellation methods have proved to be most useful in close-

microphone applications [4, 9]. This is because BSS algorithms usually require identification of

system transfer functions from each source to each microphone, which is complicated. Permutation

problems are common in BSS methods because parameters are estimated independently in each

frequency bin, and they need to be assigned so as to correspond to the same source across all

bins. Beamforming requires a fixed geometry of microphones (here, the microphone locations are

arbitrary). Noise cancellation methods bypass these issues, but still require some a priori information

about the source statistics.

In Sections 1.2.1, 1.2.2 and 1.2.3, we briefly discuss the three categories of solutions available for

multi-microphone cross-talk cancellation - namely BSS, beamforming and adaptive noise cancella-

tion, before focusing on the close-microphone case in Section 1.3.
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1.2.1 Blind Source Separation (BSS)

Blind source separation aims to segregate individual signals from a mixture of sources, with no a

priori knowledge about them. It is closely related to the “cocktail party” problem, where multiple

speakers speak simultaneously, and the listener is trying to follow one of the speakers. The human

brain performs this with auditory streaming [10]. However, unlike computational auditory scene

analysis that relies on the principles of human hearing, BSS uses signal processing methods to

segregate sources. Some well-known BSS methods are given below.

• Independent Component Analysis (ICA) - ICA [7] tries to estimate an unmixing matrix

W from the observations x (microphone signals) to recover the sources s.

x = As

s = Wx
(1.1)

The sources are assumed to be independent, and the log likelihood of their joint probability

distribution is maximized to get W . The PDF of the individual sources has to be non-

Gaussian (because the multivariate standard normal distribution is rotationally symmetric).

ICA has scaling and permutation problems, i.e, the scaling factors cannot be recovered and

contributions of a given source may not be assigned consistently to a single recovered signal

for different frequency bins. The problem is more severe with an increasing number of sensors

as the number of possible permutations increases. Additionally, it works with instantaneous

mixtures, not convolutive mixtures that take into account the effect of room acoustics.

• Multichannel NMF - The Nonnegative matrix factorization algorithm proposed in [11] works

on single channel mixtures. NMF for multichannel source separation was proposed in [12]. The

multichannel model for the input at the mth microphone is:

xm(k) =

N∑
n=1

amn(k) ∗ sm(k) + bm(k) (1.2)

where bm is some additive noise. In the STFT domain, (1.2) can be written as

xm,fτ =

N∑
n=1

Amn,fsm,fτ + bm,fτ

xfτ = Afsfτ + bfτ

(1.3)

The power spectrogram |Sm|2 of source m is modeled as a product of two nonnegative matrices

|Sm|2 ≈WmHm (1.4)



CHAPTER 1. BACKGROUND 5

The parameters Af ,Wm,Hm need to be estimated. Each source STFT is modeled as a sum

of Km latent Gaussian components, i.e., sm,fτ ∼ N
(
0,
∑
k∈Km wfk, hkτ

)
. Two estimation

methods are introduced - in the first method, the joint log likelihood of the multichannel data

is maximized with the Expectation Maximization (EM) algorithm. In the second method, the

sum of the individual log likelihoods of all channels is maximized using a multiplicative update

algorithm - this is the NMF step. The computational load is is few hours per song, which is

unsuitable for real-time applications.

• Convolutive BSS - The convolutive BSS method proposed by Parra and Spence in [13]

optimizes an error function in the least squares sense in the STFT domain. From (1.3), we

can write the forward model as:

Rx(f, τ) = A(f)Λs(f, τ)A(f)H + Λb(f, τ) (1.5)

where Rx(f, τ) = E(xfτx
H
fτ ), and Λs(f, τ),Λb(f, τ) are the auto-correlation matrices of the

sources and noise respectively (which are assumed to be diagonal due to independence).

Rx(f, t) is replaced with its sample average given by :

R̄x(f, τ) =
1

N

N−1∑
n=0

x(f, τ + nT )xH(f, τ + nT ) (1.6)

The backward model can be written as:

Λ̂s(f, τ) = W (f)[R̄x(f, τ)− Λb(f, τ)]WH

E(f, τ) = Λ̂s(f, τ)− Λs(f, τ)
(1.7)

The solution can be obtained by minimizing the sum of squares of the error term E(f, τ) with

respect to W ,Λs,Λb.

arg min
W ,Λs,Λb

T∑
τ=1

K∑
f=1

||E(f, τ)||2

s.t w(t) = 0, t > Q << T

Wii(f) = 1

(1.8)

The first constraint ensures that the filter length Q is less than the frame size T , which forces

the solution to be smooth in the frequency domain and thus solves the frequency permutation

problem. The least square solutions are found with gradient descent. A problem to be ad-

dressed in practice is that the channel is typically non-stationary as well. A slight change in

the location or orientation of a source may cause drastic changes in the response characteristic

of a room.
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• Spatial Covariance model - In [14], the contribution of each source to all mixture channels

in the time-frequency domain is modeled as a zero-mean Gaussian random variable whose

covariance encodes the spatial characteristics of the source.

x(t) =

N∑
i=1

ci(t)

ci(t) = hi(t) ∗ si(t)

ci(f, τ) = hi(f)si(f, τ)

(1.9)

ci(f, τ, ) ∼ N (0,vi(f, τ)Ri(f)), where vi(f, τ) are scalar time-varying variances encoding the

spectro-temporal power of the sources, and Ri(f) are the spatial covariance matrices. Four

specific covariance models are considered, including a full-rank unconstrained model. A family

of iterative expectation-maximization (EM) algorithms are derived to estimate the parameters

of each model. Suitable procedures are proposed to initialize the mixing filter and spatial

covariance matrix with hierarchical clustering of the STFT bins, and to align the order of the

estimated sources across all frequency bins based on their estimated directions of arrival (DOA)

to solve the permutation problem. In [15], the multichannel filter is derived from the source

spectra, vi(f, τ), which are estimated with deep neural networks, and the spatial covariance

matrices, Ri(f), which are updated iteratively using EM.

Other multichannel BSS algorithms include TRINICON [16] (Triple-N ICA) exploiting non-

whiteness, non-stationarity and non-gaussianity of the signal, and [17] where an efficient frequency

domain algorithm for BSS is presented.

1.2.2 Beamforming with Microphone Arrays

Microphone arrays consist of a number of microphones arranged in a particular geometric pattern.

They are used for source localization, source separation, binaural recordings and ambisonics. Beam-

forming is a spatial filtering technique that aims to enhance or attenuate signals emanating from

particular directions. Beamforming can separate sources with overlapping frequency content that

originate at different spatial locations. The simplest beamforming technique is delay-and-sum beam-

forming, where the signals at the microphones are delayed and then summed in order to combine the

signal arriving from the direction of the desired source coherently, while the interference components

arriving from other directions cancel to a certain extent due to destructive interference. Statistically

optimum beamforming methods for source separation are covered in [18, 19], some of which are

discussed below.

• Linearly Constrained Minimum Variance - The algorithm proposed by Frost in [20] iter-

atively adapts the weights of a sensor array to minimize noise power at the array output while
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maintaining a chosen frequency response in the look direction. This amounts to a constrained

least-mean squares problem, solved by a simple stochastic gradient descent algorithm that

requires the direction of arrival and frequency band of interest to be specified a priori.

A processor with K sensors and J taps per sensor has KJ weights and requires J constraints to

determine its look direction. Because of these constraints, minimizing the total output power

is equivalent to minimizing the non-look direction power, as long as the signal and noise at

the taps are uncorrelated. The constrained least squares problem becomes

min
w

E[(wTx)2]

min
w

E[wTxxTw]

= min
w
wTRxw

s.t. CTw = F .

(1.10)

where Rx is the autocorrelation matrix of the signal at each tap, w is the vector of weights,

C = [c1, . . . , cJ ] such that cj [i] = 1 ∀ i = (j − 1)K, . . . , jK, cj [i] = 0 otherwise, and F =

[f1, . . . , fJ ]T is the J dimensional vector of weights of the look-direction-equivalent tapped

delay line. The Lagrangian and its derivative with respect to the weights is given by :

J(w, λ) =
1

2
wTRxw − λ(CTw −F)

∇wJ(w, λ) = Rxw − Cλ.
(1.11)

The weights are changed iteratively using stochastic gradient descent.

w(k + 1) = w(k)− µ∇wJ(w, λ) (1.12)

The advantage of this algorithm is that it requires no prior knowledge of the signal or noise

statistics.

• Minimum Variance Distortionless Response - The minimum variance distortionless re-

sponse (MVDR) beamformer [21] minimizes the power of the output signal subject to a single

constraint assuring an undistorted response for the target source (or a filtered version of it).

The distortionless response constraint requires that the desired component in the output signal

is equal to the target signal. It leads to the following optimization problem.

min
w

wHRxw s.t. wHh0 = 1 (1.13)

where h0 is the impulse response of the acoustic transfer function of the target source.

• Hybrid BSS-Beamforming - A benefit of blind source separation is that it overcomes the
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conventional cross-talk or leakage problem of adaptive beamforming. Beamforming on the

other hand exploits geometric information which is often readily available but not utilized in

blind algorithms. In [22], a Geometric Source Separation (GSS) algorithm is proposed, which

combines the method proposed in [13] with geometric constraints on the filter coefficients,

similar to the linear constraints in the beamformer proposed by Frost [20]. It is found that the

geometric constraints resolve some of the ambiguities inherent in the independence criterion

in BSS such as frequency permutations and degrees of freedom provided by additional sensors.

Similarly, in [23], BSS is combined with ICA. First, a new subband ICA is introduced to achieve

frequency domain BSS on the microphone array system, where directivity patterns of the array

are explicitly used to estimate each direction of arrival (DOA) of the sound sources. This

method resolves permutation problems without the assumption for interfrequency continuity

of the unmixing matrices. Next, based on the DOA estimated in the ICA section, a null

beamformer is constructed in which the directional null is steered to the direction of the

undesired sound source, in parallel with the ICA-based BSS. There is no difficulty with respect

to a low convergence of optimization because the null beamformer is determined by only DOA

information without assumption of independence between sound sources.

• Acoustic Rake Receiver - Acoustic Rake Receivers (ARR) [24] use echoes in rooms to

improve beamforming. Acoustic Raking is a multistage process comprising image source lo-

calization, image source tracking, and beamforming weight computation. ARRs can suppress

interference in cases when conventional beamforming is bound to fail, for example when an

interferer is occluding the desired source. The raking microphone beamformers are particu-

larly well- suited to extracting the desired speech signal in the presence of interfering sounds,

in part because they can focus on echoes of the desired sound and cancel the echoes of the

interfering signals. In [25], ARRs are designed and applied in the frequency domain. ARRs

require localization of the echoes, which is done by finding the image sources [26]. In [25],

methods are proposed to find the image sources when the room geometry is either known or

unknown. The results show that the signal to interference ratio (SIR) and the perceptual

quality of speech with ARR is vastly improved over conventional beamforming.

In general, beamforming suffers from the drawback of being sub-optimal in reverberant conditions

because the signals may reach the sensor array from many directions, so the optimization often alters

the response for the region of interest also. Acoustic raking can overcome this problem by utilizing

echoes. Microphone arrays are not going to be used in the close-microphone bleed cancellation

problem. However, beamforming techniques are useful to study for adaptively altering the unmixing

filter weights to focus on receiving signal only from a direction of interest.
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1.2.3 Adaptive Noise Cancellation

Noise cancellation algorithms aim to reduce additive noise from a measured signal. The signal

and the noise could be assumed to be wide-sense stationary (e.g. Wiener filter), and are generally

uncorrelated. Adaptive noise cancellation is a technique to cancel noise and interfering signals by

adaptively adjusting filter coefficients - the stationarity criterion is not required. Adaptive filters

such as the least mean squares and recursive least squares fall in this category. In most noise

cancelling algorithms, a trade-off between noise reduction and signal distortion is observed. Some

common methods are discussed below.

Figure 1.1: Configuration of an LMS adaptive filter.

• Least Mean Squares (LMS) - The famous LMS adaptive algorithm was proposed by

Widrow et al. [27]. The typical configuration of an LMS adaptive filter is given in Fig. 1.1,

where x is the noisy input, d is the desired input, ε is the error and w are the filter weights.

It minimizes the mean squared error with respect to the filter weights w. The cost function is

J(w) = E(ε2)

= E[(d−wTx)2]

= E(d2) +wTRxw − 2wTE(xd)

(1.14)

The optimal weights are found by minimizing the cost function with respect to the weights.

ŵ = arg min
w

J(w)

∇wJ(w) = 2Rxŵ − 2E(xd)
(1.15)

Replacing the expectations with the sample covariances, an iterative update to the filter weights

is derived using gradient descent.

ŵ(k) = ŵ(k − 1) + µ∇wJ(w)

ŵ(k) = ŵ(k − 1) + 2µε(k)x(k)
(1.16)

where µ is the convergence factor. If µ is too large, the algorithm will not converge. If µ is

too small the algorithm converges slowly and may not be able to track changing conditions.
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Tracking performance of the standard LMS algorithm is improved in [28] which proposes the

state-space LMS (SSLMS) which incorporates a linear time varying state-space model of the

underlying environment.

• Recursive Least Squares (RLS) - RLS [29] is an adaptive filter algorithm that recursively

finds the coefficients that minimize a weighted linear least squares cost function relating to

the input signals. Contrary to LMS, RLS shows superior tracking performance and the cost

of high computational complexity. The weighted cost function is formulated as

J(w(k)) =

k∑
i=0

λk−iε(i)2 (1.17)

where 0 < λ ≤ 1 is the forgetting factor that gives exponentially less emphasis to older time

samples. By minimizing this cost function, a recursive update is derived which is of the form

ŵ(k) = ŵ(k − 1) + P (k)x(k)
[
d(k)− ŵ(k − 1)Tx(k)

]
(1.18)

where P (k) = Rx(k)−1 is the recursive update to the inverse of the autocorrelation matrix.

State-space RLS (SSRLS) has been proposed in [30], that extends RLS to work with an un-

derlying state space model.

• Wiener Filter - The Wiener filter minimizes the mean squared error between the estimated

random process and the desired process. The noise as well as the signal statistics are assumed

to be stationary. The additive noise problem can be formulated as

y(k) = x(k) + n(k)

J(w) = E[(wTy(k)− x(k))2]

w = [w0, w1, . . . , wP ]T

y(k) = [y(k), y(k − 1), . . . , y(k − P − 1)]T

(1.19)

The optimal Wiener filter solution is:

W (ω) =
Pxx(ω)

Pxx(ω) + Pnn(ω)
(1.20)

where Pxx and Pnn are the power spectral densities (PSDs) of the desired signal and noise

respectively. The filter is not adaptive, per se. However, it can be made to work with non-

stationary signals by estimating short time PSDs using the STFT, as in [4].

Speech distortion weighted multichannel Wiener filter in [31] optimizes a cost function such

that trade-off is achieved between speech distortion and noise reduction.
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• Kalman Filter - The Kalman filter [32] is an algorithm that uses a series of measurements

observed over time, containing statistical noise, and produces estimates of unknown variables

that tend to be more accurate than those based on a single measurement alone, by estimating

a joint probability distribution over the variables for each time sample. It reduces the variance

of the conditional error iteratively. It is primarily used for tracking applications, which have an

underlying linear dynamical system, such as, in [33, 34]. Kalman filter for speech enhancement

was proposed in [35] which made use of the autoregressive model of speech production. Kalman

filter tuning for speech enhancement was explored in [36]. It has also found its use in echo

cancellation [37] and dereverberation [38]. It has potential to be used in microphone leakage

reduction, as long as the model is linear.

Multichannel microphone bleed cancellation can be seen as a noise cancellation problem with multiple

sources of noise. The signal and noise are of course, non-stationary. In [39], a 2-channel coupled LTI

system is separated using signal decorrelation. The convolutive effect of the room response makes

it tricky for interfering signal statistics to be estimated in this context.

1.3 Close Microphone Bleed Cancellation

1.3.1 Background

Microphone bleed has been a nuisance in the audio engineering community for decades. When

two microphones pick up the same signal with a time delay, comb filtering artifacts are present

(Fig. 1.2). Furthermore, when dynamic, non-linear effects like compression are applied, the bleed

from other instruments becomes even more prominent, since compression makes soft sounds louder.

An expensive solution to the microphone bleed problem is to use acoustic isolation panels between

musicians. For example, drums can be recorded in a separate isolation booth (acoustically treated

soundproof room). Obviously, this is not feasible in a live setting. Simpler solutions include using

directional microphones with specific polar patterns to pick up radiation from a desired direction,

and using the close-miking technique where microphones are placed at a distance of 5 − 50 cm

from the sound source [40]. However, these techniques are unable to eliminate bleed completely.

Interference can become significant in such cases due to the effect of room acoustics and nearby

strong reflective surfaces. During mixing, noise gates can be used which allow the signal to pass

through only when its amplitude is above a certain threshold. However, noise gates alter the timbre

of broadband sounds, like percussion instruments, and mute subtle playing techniques, such as the

scratch of a bow on the strings or the sound of a plectrum striking the strings, which adds a layer

of detail and depth to the performance.

In recent years, both researchers and audio plugin companies have come up with novel solutions to

this problem. Some successful products include Izotope’s De-bleed module in RX-7 [41], Drumatom
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Figure 1.2: Comb filtering effects [1]
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[42] for drum bleed cancellation and Wilkinson audio’s DeBleeder plugin [43]. However, the details

of the algorithms used in these products are usually not publicly available. A brief summary of the

mathematical formulation of the problem, and research published by the signal processing community

on this topic is given below.

1.3.2 Existing approaches

Figure 1.3: Instruments, monitors and microphones in a live concert setting [2].

Microphone and loudspeaker placement in a typical live concert setting is given in Fig. 1.3.

Microphones are placed close to the instrument, typically, a few inches away. Multiple close mi-

crophones may be used to record/amplify the same instrument. We will assume that the mics are

omnidirectional. The mic assigned to a particular instrument primarily picks up that instrument and

leakage from all other sources plus background noise. Consider N sources, each denoted by sn(k) in

a reverberant environment, and M mics picking up the signals xm(k). Following the notation used

in [4], and ignoring the loudspeakers and their acoustic paths, the problem maybe formulated as:

xm(k) = sm(k) ∗ hmm(k) +

N∑
i=1,i6=m

si(k) ∗ hmi(k) (1.21)

where hmn(k) is the FIR filter that models the acoustic path between the nth source and the mth

mic. The direct source is given as :

s̄m,m(k) = sm(k) ∗ hmm(k) (1.22)
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and the total microphone leakage is

s̄i,m(k) = si(k) ∗ hmi(k)

ūm(k) =

N∑
i=1,i6=m

s̄i,m(k)
(1.23)

Equation (1.21) can then be represented as a signal in additive noise problem

xm(k) = s̄m,m(k) + ūm(k) (1.24)

The sources are assumed to be uncorrelated. The problem then is to estimate a correct set of filter

coefficients that can recover the signal of interest while canceling leakage from each microphone

signal. Let the desired filter be wm(k). Then,

ŝm(k) = xm(k) ∗ wm(k) (1.25)

The error signal is given as

em(k) = s̄m,m(k)− ŝm(k) (1.26)

The error is used to formulate a cost function, which is minimized with respect to the coefficients of

the filter wm. Methods in the existing literature include:

• Wiener filtering - The state-of-the-art method described in [4] by Kokkinis et al. minimizes

the mean squared error, which ultimately leads to the well-known Wiener filter, given by:

Ŵ (ω, τ) =
Ps̄m,m(ω,τ)

Ps̄m,m(ω,τ) + Pūm(ω,τ)

=
Ps̄m,m(ω,τ)∑N
i=1 Ps̄i,m(ω,τ)

(1.27)

where P (ω, τ) is the short-time power spectral density at frequency bin ω and time-frame τ .

The short-time PSD for each frame needs to be estimated. A PSD estimation method is intro-

duced based on the identification of dominant frequency bins, i.e., regions of the microphone

and output PSDs that are approximately the same with that of the original source signal.

A simple way to estimate the leakage PSDs is also presented, based on a set of weighting

coefficients which are estimated during time intervals where only one source is active. The

results show robust performance for different source-microphone distances and large reverber-

ation times. However, the PSD estimate is adversely affected if the interfering source has high

energy spread across the spectrum. A special case of the two microphone, two source problem

is presented in [2].
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• Kalman based Wiener filter - More recently, a Kalman-based Wiener filter approach has

been presented in [44, 9], which uses the Kalman filter to update the interference signal’s power

spectra. It combines the multichannel Wiener filter proposed by Kokkinis with Multichannel

Acoustic Echo Cancellation (MAEC) [45].

The MAEC is implemented in an overlap-save (OLS) structure with a frame length of size K

and a frame shift R. First, each frame of the interferer’s microphone channel xµ(`) is trans-

formed into the frequency domain and shaped into a diagonal matrix by Xµ(`) = diag(FK×K

xµ(`)), with FK×K being the K-point DFT matrix. The target microphone frames are pro-

cessed by the overlap-save projection matrix Q = [0R×(K−R) IR×R]> as Xm(`) = FK×K Q

xm(`), where 0 and I denote a zero and unity matrix, respectively.

The prediction of the current filter coefficient state Ĥ+
m,µ(`) of interferer channel µ w.r.t. the

target channel m is calculated by

Ĥ+
m,µ(`) = Am,µĤm,µ(`− 1) (1.28)

whereby Am,µ is a first-order Markov model prediction coefficient.

The DFT of the preliminary error vector is obtained by

Ẽm(`) = Xm(`)−
∑
µ∈I

G ·Xµ(`)Ĥ+
m,µ(`) (1.29)

with the overlap-save constraint matrix G = FK×KQ ·Q
TF−1

K×K . Subsequently, the predicted

filter coefficient states are updated by

Ĥm,µ(`) = Ĥ+
m,µ(`) +Km,µ(`)Ẽm(`) (1.30)

where Km,µ(`) is the Kalman gain matrix. The estimated interferer signals in channel m are

then obtained by,

D̂m,µ(`) = G ·Xµ(`)Ĥm,µ(`). (1.31)

The interferer PSD is calculated from this.

• Kernel Additive Model - Kernel Additive Modeling for interference reduction (KAMIR)

was introduced in [46]. KAMIR also minimizes the mean squared error, arriving at the same

Wiener filter given in [2, 4]. It assumes the time frequency bins of the source signals to be

independent and distributed normally, following Sm(ω, τ) ∼ N (0, λm,n(ω)Pm(ω, τ)). the scalar

λmn(ω) gives the amount of interference of source n into mic m at frequency ω. Therefore, its

elements constitute the interference matrix Λ(ω) ∈ RM×N. All mics are assumed to share the
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same latent PSD, Pi, for the ith source. The Wiener filtering step in (1.27) then becomes

ŴKAM (ω, τ) =
λm,m(ω)Pm(ω, τ)∑N
i=1 λm,i(ω)Pi(ω, τ)

(1.32)

There are two steps in KAM - in the separation step, the Wiener filtering in (1.32) is performed.

In the parameter fitting stage, the parameters Λ(ω), Pi ∀ i = 1, . . . , N are re-estimated. This

procedure is repeated for a given number of iterations. The number of iterations controls the

trade-off between interference reduction and distortion.

• Cross-talk resistant adaptive noise canceler - Typical adaptive filtering techniques such

as the least mean squares (LMS) assumes the availability of a noise reference signal. In

CTRANC [47], outputs of multiple adaptive filters are cascaded so that the output of one

becomes the reference noise signal for the other. Centered adaptive filters try to estimate

the time delay of the source reaching the microphone, and a window of filter coefficients

around the delay are updated. This ensures computational efficiency and quicker convergence.

Centered CTRANC is proposed in [47]. The delay estimation is done by the Generalized

Cross Correlation method using the Phase Transform (GCC-PHAT) [48]. The results show

poor performance in the presence of reverberation.

• Nonnegative Signal Factorization - Nonnegative matrix factorization (NMF) is a popular

method used in source separation [11], where the mixed signal is assumed to be a weighted

sum of basis functions, which are nonnegative. The task is to find the weights and the basis

functions by minimizing divergence. The system proposed in [49] is composed of two main

blocks: a panning matrix estimation block and the actual source separation block. Both

blocks need as an input the spectrograms of the mixture microphone signals and a set of

instrument basis functions calculated from an available training database. The panning matrix

estimation procedure is based on the discrimination of time-frequency zones with minimum

overlap between the concurrent instruments, which is performed by using the output of an

automatic transcription stage. The estimated panning matrix is then fed to the NMF-based

separation stage, which also uses the modeled instrument basis to estimate the magnitude

spectrograms of the original sources. These spectrograms are finally used to recover the actual

sources by constructing a Wiener mask that is applied over the input spectrograms.
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• IIR filters - Taking the Z-transform of (1.21) and using matrix notation, we can write:

X(z) = H(z)S(z)

X(z) = [X1(z), X2(z), . . . , XM (z)]
T

S(z) = [S1(z), S2(z), . . . , SN (z)]
T

H(z) =


H11(z) H12(z) . . . H1N (z)

...
...

. . .
...

HM1(z) HM2(z) . . . HMN (z)


Ŝ(z) = W (z)X(z)

W (z) = H†(z)

(1.33)

In [50], the mixing FIR filters, Hmn(z) are represented by a scalar gain and time delay in

samples

Hmn(z) = αmnz
−τmn (1.34)

The inverse filters Wmn(z) are therefore IIR feedback comb filters. Estimation of the scalar

gain and the delay is done with GCC-PHAT [48]. It is observed that underestimation of gains

leads to more cross talk, and delay estimation errors lead to ripple and decreasing separation

in high frequency.
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1.4 Goals of thesis

• To come up with a novel method for close-microphone cross-talk cancellation that takes into

account the room acoustics.

• The method should be physically reasonable and mathematically optimal.

• The method should be robust and work with any number of microphones and sources in any

studio with an arbitrary reverberation time.

• The method should reduce cross-talk while introducing least amount of distortion.

• The method should be computationally feasible and/or optimized for fast computation.

• The method should give results comparable to the state-of-the-art Multichannel Wiener Filter,

which is the minimum mean squared error estimator.
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Problem Formulation

In this chapter, we mathematically derive the model for multichannel cross-talk cancellation. We

rely on the captured microphone signals, as well an estimate of the acoustic path from each source

to each microphone, which is typically represented with FIR filters. A few methods are suggested

for estimating the relative transfer function (RTF) based on the close microphone assumption, that

rely on a calibration stage during the recording setup. Based on this problem formulation, two

new methods for reducing microphone-bleed will be proposed in the upcoming chapters.

2.1 Model

For N mic signals x = [x1, x2, . . . , xN ]> and M sources s = [s1, s2, . . . , sM ]>, the nth mic signal at

time index k can be written as

xn(k) =

M∑
i=1

si(k) ∗ hni(k) + w(k) (2.1)

where hni is the acoustic transfer function between the ith source and the nth mic, and w(k) is

additive noise, w(k) ∼ N (0, σ2
w) ∀ k, caused by microphone “self-noise”. The acoustic transfer

function contains the direct sound path, as well as frequency-dependent source radiation pattern

and room acoustics. An example of this configuration is shown in Fig. 2.1. In the time-frequency

domain, the convolution of the sources with the transfer function becomes multiplication of a time-

invariant transfer function matrix with the source vector for each time frame, τ , and frequency

bin, ω. Although in reality, the acoustic transfer function is not time-invariant due to changes in

temperature and pressure, for all practical purposes, the time variation is slow enough to make such

an assumption. Similarly, movements made by the musicians also affect the acoustic path, but these

are usually small compared to the mean free path traveled by sound waves. Assuming the transfer

19
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Figure 2.1: Example of a studio setup

function to be time-invariant has the advantage of considerably reducing the number of unknowns

to be estimated, and gives a smoothly varying RTF.

xτ (ω) = H(ω)sτ (ω) +w

H(ω) =


h11(ω) h12(ω) . . . h1M (ω)

h21(ω) h22(ω) . . . h2M (ω)
...

...
. . .

...

hN1(ω) hN2(ω) . . . hNM (ω)


(2.2)

We want to estimate the source vector sτ (ω) given the microphone signals, xτ (ω). However, it is

clear that without knowing H(ω) we cannot solve this system of equations. Assuming we have some

knowledge of the transfer function matrix, i.e., a noisy estimate of the transfer function matrix with

each element in the noise matrix ν independent and identically distributed with the same mean and
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variance,

H̃(ω) = H(ω) + ν; ν
i.i.d∼ N (0, σ2

ν) (2.3)

our goal is to jointly estimate the optimal values H∗(ω), s∗τ (ω) given H̃(ω),x∗τ (ω).

2.1.1 Effect of Room Acoustics

Close-miking ensures a high direct-to-reverberant ratio is achieved in the captured microphone signal.

This negates the effect of room acoustics to a large extent, and places prominence on the direct path,

which can simply be approximated as a gain and a delay term [5]. This justifies our choice of modeling

the diagonal elements of the RTF matrix as unity. When microphones are placed more than 1 m

away from the source, there is a significant degree of influence of the acoustics of the space on the

recorded signal.

The leakage path from the other sources, however, can be affected by room acoustics. As discussed

in Chapter 2 of [1], a large presence of early reflections contributes significantly to the amount of

leakage present in the microphone signal and indicates that contrary to our intuition, leakage can

be significantly higher in small rooms with a large amount of reflective surfaces in proximity with

the microphone, than in larger rooms with longer reverberation time. The increased amount of

significant early reflections manifested in the leakage acoustic paths, increases the energy of the

signals propagating through these paths, and result in interfering signals of higher energy in the

microphone signals, thus increasing interference. This indicates that the off-diagonal elements of the

RTF matrix can be modeled by FIR filters of the order of a few hundred samples.

2.2 Calibration

To estimate the relative transfer function matrix, H̃(ω), we propose a calibration stage. When

all the microphones in the studio have been setup, a sound-check can be performed where one

instrument is active at a time and picked up by all the microphones. For example, while recording

drums, each drum part can be struck separately and captured simultaneously by all the mics. While

recording an orchestra, each section can play at a time. This is common in actual recording setups

when the individual microphone levels are adjusted after miking all the instruments. In the following

sections, we discuss some methods of estimating ˜H(ω) from the recorded solo instrument sections.

2.2.1 Spectral Ratio

The diagonal elements in H̃(ω) represent the transfer function from the desired source to the closest

microphone, whereas the off-diagonal elements represent the transfer function of the interfering

sources. The sound captured by the microphone closest to the mth source can be approximated

as the source itself. Its spectral ratio with the sound captured by the nth microphone gives an
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approximate value of h̃nm(ω). We take the average of spectral ratios of frames that have significant

energy (energy greater than or equal to −3 dB from the frame with maximum energy) to get the off-

diagonal elements, h̃nm(ω). The diagonal elements, h̃nn(ω), are approximated to be 1 to represent

a unit magnitude direct path with no delay.

sigm =

[
τ ∈ 1, 2, . . . , T : Eτ,m ≥

max(E1,2,...,T,m)√
2

]
where

Eτ,m =
1

L

L−1∑
l=0

|xm(τL+ l)|2
(2.4)

h̃nm(ω) =

 1 if n = m

1
Nsig

∑
τ ∈ sigm

xnτ (ω)
xmτ (ω) if n 6= m

(2.5)

2.2.2 M-GCC with Least Squares

The estimate of the initial transfer function obtained from the spectral ratio is not smooth. Instead,

we can approximate the transfer function from the mth source to the nth microphone as a direct

path, plus a few early reflections. This can be represented as an FIR filter with gains αi and delays

τi for i = 1, 2, . . . , p, where p is the FIR filter order, p−1 is the number of early reflections we want to

include in the model. We know that the strong early reflections are most prominent in determining

microphone bleed [5], hence this model is a good approximation for estimating the relative transfer

function from each source to each microphone.

h̃nm(k) =

 δ(k) if n = m∑p
i=1 αiδ(k − τi) if m 6= n

h̃nm(ω) =

 1 if n = m∑p
i=1 αi exp (−jωτi) if m 6= n

(2.6)

Here δ(k) is the Dirac-delta function. The task now is to estimate the filter gains and delays from

the data.

Time delay estimation with M-GCC

The relative time delay of a source arriving at two microphones can be estimated using GCC-PHAT

(generalized cross-correlation with phase transform) [48]. While the time delay of arrival (TDOA)

estimation of multiple sources with GCC-PHAT is a formerly investigated topic [51] and TDOA with

multiple sources and multiple microphones with GCC-PHAT has been explored in [52], we expand
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the analysis to show that sparse early reflections in a room impulse response can also be detected

with a modified version of the GCC function. This is because the modified GCC function of such

an impulse response can be approximated as a sum of Dirac-delta functions. The location of these

Dirac-delta functions determines the time of arrival of the early reflections.

Let there be two microphones, x1(t), x2(t) capturing a source, s(t). x1(t) is a close mic. The

time and frequency domain equations of the microphones are

x1(t) = s(t) + n1(t)

x2(t) =

p∑
i=1

αis(t− τi) + n2(t)

X1(ω) = S(ω) +N1(ω)

X2(ω) = S(ω)

p∑
i=1

αi exp (−jωτi) +N2(ω)

(2.7)

where n1(t), n2(t) are zero-mean additive white noise that are uncorrelated with each other and s(t).

Now, the cross correlation function of the two microphone signals (or the cross-power spectrum in

the frequency domain), can be written as

Rx1,x2
(l) = E[x1(t)x2(t− l)]

Φx1,x2(ω) = X1(ω)∗X2(ω)

The Generalized Cross-Correlation function with Phase Transform (GCC-PHAT) at lag l is defined

as

R̃x1,x2(l) =
1

2π

∫ π

−π

Φx1,x2
(ω)

|Φx1,x2(ω)|
ejωldω (2.8)

If we assume that the noise variance is small enough to be ignored, and modify the GCC-PHAT

function such that M-GCC (modified generalized cross-correlation) is defined as

R̃mx1,x2
(l) =

1

2π

∫ π

−π

Φx1,x2
(ω)

Φx1,x1(ω)
ejωldω

≈ 1

2π

∫ π

−π

p∑
i=1

αi exp(−jωτi)ejωldω

≈ 1

2π

p∑
i=1

∫ π

−π
αi exp(jω(l − τi))dω

≈
p∑
i=1

αi
sin(π(l − τi))
π(l − τi)

arg max
l

R̃mx1,x2
(l) = τi ∀ i = 1, 2, · · · , p

(2.9)
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This function has peaks at the time of arrivals of the reflections.

Least squares estimation of gains

Once we determine the time delays, we can write the M-GCC function without the inverse Fourier

transform as

Ḡ(ω) =
Φx1,x2

(ω)

Φx1,x1(ω)
≈

p∑
i=1

αi exp (−jωτi) (2.10)

For a vector of frequencies, ω = ω1, . . . , ωN ,∈ [−π, π], eq. (2.10) can be written as the following

system of equations 
Ḡ(ω0)

...

Ḡ(ωN )

 =


e−jω0τ1 . . . e−jω0τp

...
. . .

...

e−jωNτ1 . . . e−jωNτp



α1

...

αp


The gain vector can then be estimated using linear least squares.

Ḡ = Eα

α̂ = (EHE)−1EHḠ
(2.11)

2.2.3 Blind Channel Identification

The aim of Blind Channel Identification (BCI) is to identify unknown system responses excited by

unknown source signals. Time invariant FIR filters are used to model the unknown system responses.

The order of the system (or length of the channel response) is assumed to be known. The case of

Single-Input-Multi-Output (SIMO) systems are the most well-developed, although some methods

have been suggested for Multi-Input-Multi-Output (MIMO) systems, which typically employ higher

order statistics [53, 54]. If calibration has been done for microphone bleed cancellation, then the

response from each source to all the microphones is a SIMO system.

One of the first BCI methods was the Cross-Relation method proposed in [55], which also laid

down the conditions for blind channel identifiability. For channels to be uniquely identifiable, the

following have to be satisfied.

• Firstly, the channels must be co-prime, i.e, the multichannel transfer functions cannot share

any common zeros.

• Secondly, the Hankel matrix of the source signal cannot be rank-deficient.

Since then, many adaptive time-domain and frequency-domain BCI algorithms have been pro-

posed - such as Multichannel LMS (MCLMS) and Multichannel Newton (MCN) [56], Normalized

Multichannel Frequency-Domain LMS (NMCFLMS) [57], and more recently, robust NMCFLMS

with `p-norm constraints [58] and NMCFLMS with phase constraint [59]. In this thesis, we use
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the NMCFLMS algorithm that has been implemented in a MATLAB toolbox [60]. In the following

paragraphs, we will describe the details of the algorithm.

Normalized Multichannel Frequency Domain LMS

For an M -channel SIMO system, the mth impulse response with L coefficients can be denoted as

hm =
[
hm,0 hm,1 . . . hm,L−1

]>
for m = 1, 2, . . . ,M , the mth microphone signal can be expressed as

xm(n) =

L−1∑
j=0

hm,js(n− j) + bm(n)

xm(n) = Hms(n) + bm(n)

(2.12)

where s(n) is the source signal and s(n) = [s(n), s(n−1), . . . , s(n−2L+2)]>, x(n) is the microphone

signal and xm(n) = [xm(n), xm(n− 1), . . . , xm(n−L+ 1)]>, bm(n) is the additive noise of the same

dimensions as x(n), and Hm is the L× (2L− 1) convolution matrix for the mth channel,

Hm =


hm,0 . . . hm,L−1 . . . . . . 0

0 hm,0 . . . hm,L−1 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . . . . hm,0 . . . hm,L−1


The cross-relation method uses the fact that convolution is commutative. Therefore,

x>mhl = x>l hm (2.13)

Using the Least Mean Squares algorithm (LMS) [27] , we can find iterative updates for the channel

impulse response. For the nth iteration, the apriori error in the time-domain is given by

eml(n) = x>mĥl(n− 1)− x>l ĥm(n− 1)

The cost function, J(n), is the sum of the square of the error. The update equation for the nth

iteration is

ĥ(n) = ĥ(n− 1)− µ∇J(n) (2.14)

where µ is the step-size.
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The Multichannel Frequency Domain (MCFLMS) algorithm is developed based on the deriva-

tion of cross-relation in the frequency domain. Compared to the time-domain MCLMS algorithm,

MCFLMS is more computationally efficient since it uses the FFT to calculate the block convolution.

We can write,

ỹml = Cxm(k)ĥ10
l (k) (2.15)

where k is the frame index, ĥ10
l (k) = [ĥl(k)>0>]> is the lth channel estimate with zero padding,

and Cxm is a 2L× 2L circulant matrix,

Cxm(k) =


xm(kL− L) xm(kL+ L− 1) . . . xm(kL− L+ 1)

xm(kL− L+ 1) xm(kL− L) . . . xm(kL− L+ 2)
...

...
. . .

...

xm(kL+ L− 1) xm(kL+ L− 2) . . . xm(kL− L)


For each ỹml(k) of length 2L, the last L samples are retained since they correspond to the linear

convolution given by x>m(n)ĥl(n). As a result, by defining two selecting matrices

W 01
L×2L = [0L×LIL×L], W 10

2L×L = [IL×L0L×L]>

the desired result yml(k) can be obtained.

yml(k) = W 01
L×2Lỹml(k) = W 01

L×2LCxm(k)ĥ10
l (k),

= W 01
L×2LCxm(k)W 10

2L×Lĥl(k)
(2.16)

Since the matrix, Cxm is circulant, it can be decomposed as

Cxm(k) = F−1
2L Dm(k)F2L

where F2L is a 2L× 2L DFT matrix and Dm(k) is a diagonal matrix with the diagonal elements as

the DFT coefficients of the first row of the circulant matrix. Now, the frequency-domain CR error

can be written as

eml(k) = FL [yml(k)− ylm(k)]

= FLW
01
L×2L

[
Cxm(k)W 10

2L×Lĥl(k)−Cxl(k)W 10
2L×Lĥm(k)

]
=W01

L×2L

[
Dm(k)W10

2L×Lĥl(k)−Dl(k)W10
2L×Lĥm(k)

] (2.17)
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for m, l = 1, 2, . . . ,M,m 6= l, where

W01
L×2L = FLW

01
L×2LF

−1
2L , W10

2L×L = F2LW
10
2L×LF

−1
L

ĥm(k) = FLĥm(k)
(2.18)

The MCFLMS algorithm is given by

e01
ml(k) =W01

2L×Leml(k) = F2L

[
0L×1

F−1
L eml(k)

]
ˆh10

m (k − 1) =F2Lĥ
10
m (k − 1) = F2LW

10
2L×Lĥm(k − 1),

ĥ10
m (k) =ĥ10

m (k − 1)− µ
M∑
l=1

D∗l (k)e01
ml(k)

(2.19)

where µ is the step-size and

W01
2L×L = F2LW

10
2L×LF

−1
2L

Although the MCLMS algorithm converges to the optimal solution, its convergence is slow be-

cause of nonuniform convergence rates of the filter coefficients and cross-coupling between them.

In order to achieve independent and uniform convergence for each filter coefficient and, therefore,

accelerate the overall convergence, the coefficient updates need to be properly normalized at each

iteration, and hence, the NMCFLMS algorithm was developed. The update step in eq. (2.19) is

replaced with

Pm(k) = λPm(k − 1) + (1− λ)

M∑
l=1,l 6=m

D∗l (k)Dl(k)

ĥ
10

m (k) = ĥ10
m (k − 1)− µ [Pm(k) + δI2L×2L]

−1 ×
M∑
l=1

D∗l (k)e01
ml(k),

(2.20)

where λ =
(
1− 1

3L

)L
is the forgetting factor, µ is the step size and δ is the regularization parameter.

To satisfy the unit-norm constraint [29], the frequency-domain coefficients of the adaptive filter are

initialized as ĥ
10

m (0) = 12L×1/
√
M .

2.2.4 Simulation and Results

RIR with Image-Source Method

To test the methods described above, we virtually placed a linear array of N = 5 omnidirectional

microphones in a 5×6×3 m3 room, with the array center at (2.5, 2, 1.6) m, and a microphone spacing
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Figure 2.2: Mic and source position in virtual room

of 20 cm. The source is placed at (2.1, 2.2, 1.6) m, with the closest microphone 20 cm from the source

and the farthest microphone 85 cm from the source. The room has a reverberation time, T60, of

300 ms. A Gaussian white noise sequence of 5 s is generated at a sampling rate of 8 kHz, and the

image-source method [61] is used to generate impulse responses of channel length L = 128 samples

from the source to each microphone. The configuration is shown in Fig. 2.2. In the following figures,

we show the results of estimating the impulse response from the source to the farthest microphone,

by making use of the signal captured by the closest microphone.

Spectral ratio The results of channel estimation by taking the spectral ratio of the mic closest to

the source and the desired mic is shown in Fig. 2.3a. For the STFT, a frame size of 1024 samples,

and a Hanning window with 50% overlap is used (for constant overlap-add). The FFT size is 4096

samples. The actual and estimated impulse responses match closely.

M-GCC The results of estimating the desired channel with M-GCC with an FIR filter order of

p = 15 is shown in Fig. 2.3b. The low order of the filter misses many reflections but it captures the

reflections with the largest amplitudes. More accurate representations can be captured with higher

order filters, but this is adequate for our application, where we focus on the strong early reflections.

NMCFLMS For the NMCFLMS algorithm, we set µ = 0.8, λ = 0.98, and F = 2L. The plots

showing the measured and estimated impulse responses of the first channel, as well as the magnitude

of the cost function vs data length, is shown in Fig. 2.3d. As expected, the cost function converges

after processing 1 s of data. The estimated impulse response matches the actual impulse response
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Figure 2.3: Measured (blue) and estimated (red) channels.
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Figure 2.4: Measured (blue) and estimated (red) channels.

very closely.

Measured RIR

Stereo Mackie CR3 (3 inch) speakers were setup near a wall in a 34 m2 studio apartment, at a

distance of approximately 1 m from each other. An AT-2020 cardioid condensor microphone was

placed close to the left speaker, at a distance of approximately 12 cm. A 10 s sine sweep was played

through each speaker at a time, and recorded by the microphone. From this, a set of two impulse

responses were obtained, from the left speaker to the mic, and from the right speaker to the mic.

For the impulse response from the left speaker to the mic (close-microphone case), the noise floor
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before the direct path was truncated, and its energy was normalized to unity.

The same 5 s white noise signal from Section 2.2.4 with 40 dB SNR was convolved with the first

128 samples of the two impulse responses. Spectral ratio, M-GCC and NMCFLMS with the same

parameters were used to identify the impulse response from the right speaker to the microphone.

The results are shown in Fig. 2.4.

Discussion

Although the results of the discussed methods for relative transfer function estimation are promising

when the image-source method is used for generating the room impulse response from the source

to the receiver, this case is ideal and not representative of the RIR in an actual room. With a

measured RIR, the methods fail at capturing the early reflections adequately. The spectral ratio

and NMCFLMS methods perform comparably, yielding similar RIR estimates. M-GCC performs

the worst. A real-life recording scenario will be more complex, and these methods are likely to

under-perform in estimating the transfer function matrix accurately.

2.3 Summary

In this chapter, we have mathematically derived the model for the scenario when N microphones

are used to record M sources in a studio. In the time-frequency domain, this model is linear and the

microphone signals are related to the source signals via a time-invariant relative transfer function

matrix. We have proposed a calibration stage that gives an initial noisy estimate of the relative

transfer functions. We have discussed and compared three methods for finding this initial estimate

- spectral ratio, M-GCC and SIMO BCI with Normalized Multichannel Frequency Domain LMS.



Chapter 3

Non-Bayesian Estimation :

Maximum Likelihood Estimator

In this chapter, we propose a novel method for microphone cross-talk cancellation based on a max-

imum likelihood approach. This approach requires simultaneously optimizing the joint estimate of

the sources, as well as the relative transfer functions between each source and microphone. We

derive the cost function, prove that it is convex and find an optimal solution by equating its gra-

dient to zero. We also propose methods to speed up the computation by using vectorization and

parallelization on multi-core processors. The details of this algorithm have been published in [62].

3.1 Cost function derivation

Assuming the measurement of h̃(ω) =
[
h̃11, h̃12, . . . , h̃NM

]>
and xτ (ω) to be independent, we can

maximize the joint likelihood of the measured microphone signals and estimated acoustic transfer

functions conditioned on the source signals and the actual transfer function (over all T frames and

individually for each frequency bin). In the following derivations, the frequency index ω has been

omitted for clarity, and the subscript has been used to denote a time frame.

J(s1, . . . , sT ,h) = max p(x1, . . . ,xT , h̃|s1, . . . , sT ,h)

= max p(x1, . . . ,xT |s1, . . . , sT ,h)p(h̃|s1, . . . , sT ,h)
(3.1)

32
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We can assume x1, . . .xT to be independent and identically distributed and the microphone signal

at current frame, xτ , to depend only on the source signal at current frame, sτ . Similarly, the mea-

surement of h̃ is independent of sτ∀ τ . Then, we can maximize the joint likelihood, or equivalently,

minimize negative log of the joint likelihood.

J(s1, . . . , sT ,h) = max

(
T∏
t=1

p(xt|st,h)

)
p(h̃|h),OR

= min

(
−

T∑
t=1

ln p(xt|st,h)− ln p(h̃|h)

) (3.2)

Since we have assumed normally distributed measurement noise, the above distributions are normal

with the following statistics : xt|st,h ∼ N (Hs, σ2
wI) and h̃|h ∼ N (h, σ2

νI). The quadratic cost

function is

J(s1, . . . , sT ,h) = max

[
1√

(2π)T+1σ2
wσ

2
ν

exp

(
−
∑T
t=1(xt −Hst)H(xt −Hst)

2σ2
w

− (h̃− h)H(h̃− h)

2σ2
ν

)]

= min
1

σ2
w

T∑
t=1

||xt −Hst||2 +
1

σ2
ν

||h̃− h||2

= min
1

σ2
w

T∑
t=1

||xt −Hst||2 +
1

σ2
ν

Tr
(

(H̃ −H)H(H̃ −H)
)

(3.3)

where Tr(.) is trace of a matrix, and (.)H is the Hermitian transpose. This cost function looks similar

to a least squares formulation with `2-norm regularization. However, in this case, both H and sτ

are unknown.

3.2 Proof of convexity

To prove that the cost function, J , is convex in s and h, we can show that the Hessian,

∇2J =

[
∇2
sJ ∇s(∇hJ)

∇h(∇sJ) ∇2
hJ

]

, is positive semidefinite. We will calculate each of these block matrices individually.
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For the following derivation, we will ignore the summation over frames. This is justified since

convexity is additive, and the sum of convex functions is also convex [63]. It is obvious that the

second derivative of the cost function J with respect to s is a quadratic term, and therefore positive-

semidefinite.

J(s,h) = ||x−Hs||2 +
1

σ2
||h̃− h||2

∂J

∂sj
=

N∑
i=1

−hij

(
xi −

M∑
k=1

hiksk

)
∇2
sJ = HHH

(3.4)

The second derivative of the cost function J with respect to h is a block diagonal matrix that can

be expressed as a quadratic polynomial in s, and therefore, is also positive-semidefinite.

∂J

∂hij
= −sj(xi −

M∑
k=1

hiksk)− 1

σ2
(h̃ij − hij)

∂2J

∂h2
ij

= s2
j +

1

σ2

∂J

∂him∂hij
= sjsm

∂J

∂hnm∂hij
= 0 ∀ n,m 6= i, j

∇2
hJ =


A1 0

A2

. . .

0 AN



An =


s2

1 + 1
σ2 s1s2 . . . s1sM

s1s2 s2
2 + 1

σ2 . . . s2sM
...

...
. . .

...

s1sM s2sM . . . s2
M + 1

σ2


= ssH +

1

σ2
IM×M

∇2
hJ = (ssH +

1

σ2
IM×M )⊗ IN×N

(3.5)

where IM×M ∈ CM×M , IN×N ∈ CN×N in denotes the identity matrices, and ⊗ is the kronecker

product.

The off-diagonal matrices (partial derivatives) are hermitian symmetric and opposite in sign, i.e,
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∇s(∇hJ) = −∇h(∇sJ)H.

∂2J

∂hij∂sj
= xi −

(
M∑
k=1

hiksk + hijsj

)
∂2J

∂hin∂sj
= −hijsn ∀ n 6= j

(3.6)

∂2J

∂sj∂hij
= −xi +

(
M∑
k=1

hiksk + hijsj

)
∂2J

∂sm∂hij
= himsj ∀ m 6= j

(3.7)

To prove that the Hessian is positive semidefinite, we show that for any vector v = [v1 v2] ∈
C(N+1)M , vH(∇2J)v ≥ 0.

[
vH1 vH2

] [ ∇2
sJ ∇s(∇hJ)

∇h(∇sJ) ∇2
hJ

][
v1

v2

]
vH1 (HHH)v1 + vH2 (∇h(∇sJ))v1 + vH1 (∇s(∇hJ))v2 + vH2 (∇2

hJ)v2

vH1 (HHH)v1 + vH2 (∇2
hJ)v2 ≥ 0

(3.8)

since the block diagonal matrix ∇2
hJ is positive-semidefinite, and HHH is quadratic (hence, also

positive-semidefinite).

3.3 Fisher Information Matrix

The Fisher information is the way of measuring how much information an observable random

variable, y, carries about an unknown parameter, θ, of a distribution that models the variable,

y ∈ f(y; θ). In case the observed quantities are random vectors and the parameters are multivariate,

the Fisher information matrix can be calculated. The inverse of the Fisher information gives a lower

bound on the variance of any unbiased estimator of H, s (also known as the Cramer-Rao Bound

[64]). This is a type of small-error bound [65], which depends on the probability density near its

true value, and describes the variance in the case of a large SNR, where the likelihood function is

unimodal (has one distinct peak, as in convex functions). We will derive the Fisher information

matrix of our likelihood function in this section.

Let y ∈ CN be a random vector whose probability density function, f(y;θ) is characterized by

an unknown parameter θ ∈ CP . The covariance matrix of derivative of the log likelihood of the pdf

with respect to θ is known as the Fisher information matrix.
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< Gi >

< Gi >
⊥

gi

(I − PGi
)gi

ψi

Figure 3.1: Geometric interpretation of CRB.

I(θ) = E

[(
∂ log(f(y;θ)

∂θ

)(
∂ log(f(y;θ)

∂θ

)H
]

(3.9)

The inverse of the Fisher information matrix, I−1(θ), lower bounds the error covariance matrix for

any unbiased estimator θ̂(y) of θ,

E
[
(θ̂(y)− y)(θ̂(y)− y)H

]
≥ I−1(θ) (3.10)

When f(y;θ) is a multivariate normal density N (u(θ), σ2I) with unknown mean vector u(θ) pa-

rameterized by θ, and known covariance σ2I, the Fisher information matrix is the Grammian [66],

I(θ) =
1

σ2
G>G (3.11)

The ith column gi ofG = [g1, g2, . . . , gp], also known as the sensitivity vector, is the partial derivative

gi = ∂u(θ)
∂θi

, which characterizes the sensitivity of the mean vector u(θ) to the ith parameter θi. The

CRB for estimating θi is given by

(
I−1(θ)

)
ii

= σ2
(
gTi (I − PGi

) gi
)−1

(3.12)

where Gi consists of all columns of G except gi, and PGi is the orthogonal projection onto the

column space of Gi [67]. The projection of the ith sensitivity vector gi onto the the subspace

orthogonal to < Gi > is given by I−PGi . The norm-squared of this projection is gTi (I − PGi
) gi,

and the inverse of this norm-squared is the variance bound.

Using a different interpretation. the CRB can also be written as

(
I−1(θ)

)
ii

=
σ2

‖gi‖22 sin2 (ψi)
(3.13)

where ψi is the principal angle between subspaces < gi > and < Gi >.

Now, for our derivation, let θ =
[
s1τ . . . sMτ h11 h12 . . . hNM

]>
,θ ∈ CM(N+1), and
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y = xτ . We see that u(θ) = Hsτ , ∈ CN , and xτ |θ ∼ N (u(θ), σ2
wI). The matrix G ∈ CN×M(N+1)

is given by

G =
[
∂u
∂s1

. . . ∂u
∂sM

∂u
∂h11

. . . ∂u
∂h1M

. . . ∂u
∂hN1

. . . ∂u
∂hNM

]

=


h11 . . . h1M s1 . . . sM . . . 0 . . . 0

...
. . .

...
...

. . .
... . . .

...
. . .

...

hN1 . . . hNM 0 . . . 0 . . . s1 . . . sM


=

[
H sT . . . 0

0 . . . sT

]

The Fisher information matrix is

Ixτ (θ) =
1

σ2
w

GHG

=
1

σ2
w

[
HHH sH ⊗HH

s⊗H ssH ⊗ IN×N

] (3.14)

where ⊗ denotes the kronecker product. We see that the microphone self-noise variance, σ2
w, is

directly proportional to the CRB. So, a smaller noise variance would give better estimates for the

sources and transfer functions.

The CRB for the mth source, is also inversely proportional to ||hm||22, (3.13). With increasing

number of microphones, N , we expect ||hm||22 to increase, thereby reducing the error in estimation of

themth source. However, this also depends on the principal angle between the subspaces. Orthogonal

subspaces will give the lowest CRB, while colinear subspaces will give the highest variance in error,

as shown in Fig. 3.1. Even one small principal angle can produce a large variance. The physical

interpretation of this is that the addition of arbitrarily placed room microphones may yield better

results than introducing additional microphones very close to the original microphone recording the

desired source, as they will have similar transfer functions.

3.4 Solution

There are multiple ways of solving this optimization problem. Since the cost function in ( 3.3) is

convex in H and sτ , the optimal values H∗, s∗τ can be found by calculating the gradient of the cost
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function and finding its roots, thus giving the following solution,

H∗ =

(
H̃ +

σ2
ν

σ2
w

T∑
t=1

xts
H
t

)(
I +

σ2
ν

σ2
w

T∑
t=1

sts
H
t

)−1

s∗τ = (H∗HH∗)−1H∗Hxτ

(3.15)

where I is an M ×M identity matrix. It is to be noted that
σ2
ν

σ2
w

acts as a hyperparameter. A

small value of
σ2
ν

σ2
w

gives more weight to the initial estimate of the transfer function, H̃. If the

hyperparameter is zero, then H = H̃, and we converge to the least-squares solution. The two

equations in ( 3.15) are a non-linear function of sτ and can be solved using any numerical root

finder, such as MATLAB’s fsolve.

It is also feasible to implement gradient-based solvers, such as gradient-descent [68] or the

Newton-Raphson solver [69], which makes use of the Hessian. In gradient-descent, the current

iteration of θ =
[
s1, . . . sτ , h11, . . . , hNM

]>
is updated as,

θn+1 := θn − µ∇θnJ(θ) (3.16)

where µ is the step size and ∇θnJ is the gradient of the cost function at θ = θn.

Similarly, the Newton-Raphson method can be used, which leads to quicker convergence if the

starting point is close to the global minimum,

θn+1 := θn −∇2
θnJ

−1(θ)∇θnJ(θ) (3.17)

where ∇2
θn
J(θ) is the Hessian matrix of the cost function.

3.4.1 Code vectorization and parallelization

Since the computation is independent over frequency bins, the optimization can be parallelized over

multiple cores/clusters using MATLAB’s parfor, for example. The computations can be further sped

up by replacing summation over vectors with matrix operations. More specifically, we can write the

time-varying microphone signals as an N ×T matrix X, and the source signals as an M ×T matrix

S, with time frames along the rows. The operations in (3.15) then become
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Figure 3.2: Block diagram of the proposed ML estimator.

H∗ =

(
H̃ +

σ2
ν

σ2
w

XSH

)(
I +

σ2
ν

σ2
w

SSH

)−1

S∗ = (H∗HH∗)−1H∗HX

with X =
[
x1 x2 · · · xT

]
,

S =
[
s1 s2 · · · sT .

]
(3.18)

Regardless, the computation time depends significantly on the number of sources and microphones

in the system. For a setup with M sources and N microphones, a total of M(N +T ) variables need

to be solved for each frequency bin. So, a two microphone two-source setup of a singer-songwriter

playing the guitar would compute much faster than an orchestral recording with several microphones

recording the various sections.

3.5 Summary

In this chapter, we have proposed a novel solution to the microphone bleed cancellation problem by

deriving a cost function that simultaneously solves for the sources and the relative transfer functions

between the sources and the microphones. We have shown that minimizing this cost function gives

us the Maximum Likelihood estimate when the distributions are assumed to be Gaussian. We have

proved that the cost function is convex; therefore, its global minimum can be found using gradient-

based methods. Finally, we have discussed methods to speed up the computation with vectorization

and parallelization. A block diagram of the entire process is shown in Fig. 3.2.



Chapter 4

Bayesian Estimation : Minimum

Mean Squared Error and

Maximum Aposteriori Probability

Unlike Maximum Likelihood estimation, where only the conditional probability of the microphone

signals given the source, p(x|s), is defined, Bayesian estimation also assumes the source to be a

random variable with an a priori distribution, p(s). In this chapter, we derive two such estimators

for the microphone bleed canceller - the Minimum Mean Squared Estimator (MMSE) which gives the

well-known Multichannel Wiener Filter solution, and the Maximum Aposteriori Probability (MAP)

estimator, which extends the previously derived ML model. We discuss methods for estimating the

a priori statistics of the source probability distribution.

4.1 MMSE Estimator - Multichannel Wiener Filter

Although Multichannel Wiener filter (MWF) solutions have been proposed in state-of-the-art meth-

ods for crosstalk cancellation, we discuss the Generalized Eigenvalue Decomposition based Mul-

tichannel Wiener Filter (GEVD based MWF). This method overcomes the need for using ad-hoc

measures for estimating the source power spectrum, such as proposed in [4]. The GEVD based MWF

requires an estimate of the noise (or interfering signal) correlation matrix, which we can estimate

by making use of the calibration stage during setup. Typically, this solution is much faster than the

maximum likelihood approach, since it has a closed-form solution and does not require any iterative

40
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optimization.

4.1.1 Model

The model in (2.2) can also be written as the desired source for the nth mic, plus a noise term that

consists of the interfering sources, convolved with their respective transfer functions.

xn(k) = sn(k) ∗ hnn(k) +

M∑
i=1,i6=n

si(k) ∗ hni(k) + w(k),

xn(k) = s̄n(k) + v̄n(k),

x(ω, τ) = s̄(ω, τ)︸ ︷︷ ︸
source

+ v̄(ω, τ)︸ ︷︷ ︸
interference

(4.1)

4.1.2 Optimum inverse filter

For each frequency bin, ω, the inverse filtering problem is to find the optimal filter weights Ŵ (ω),

such that

ŝ(ω) = Ŵ H(ω)x(ω) (4.2)

The error between ŝ and s̄ is

e(ω) = s̄(ω)− ŝ(ω) (4.3)

The optimal MMSE solution Ŵ ∗ is derived by minimizing the sum of squared errors. We are

omitting the frequency variable, ω, for clarity in the derivations henceforth.

J(Ŵ ) = E
[

1

2
(s̄− ŝ)H(s̄− ŝ)

]
=

1

2
E
[
s̄Hs̄− 2s̄HŴ Hx+ xHŴŴ Hx

]
∇Ŵ J =

1

2
E
[
0− 2xs̄H + 2xxHŴ ∗

]
0 = E[−xs̄H + xxHŴ ∗]

Ŵ ∗ = E(xxH)−1E(xs̄H)

= E(xxH)−1E(s̄s̄H)

(4.4)
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where E(xxH) is the covariance matrix of the microphone signals x, and E(xs̄H) is the cross-

covariance between the microphone signals and the sources, which is equal to the covariance matrix

of the source vector, E(s̄s̄H) if the noise, v̄, and the source, s̄, are uncorrelated. This solution is also

known as the Multichannel Wiener Filter (MWF).

4.2 GEVD based MWF

The covariance matrix (or power spectra) of the microphone signals in eq. (4.4), E(xxH) can be

calculated via sample averaging.

E(xxH) = Rxx ≈
1

T − 1

T∑
τ=1

xτx
H
τ (4.5)

To estimate the source covariance matrix in eq. (4.4), we use the Generalized Eigenvalue Decom-

position based Multichannel Wiener Filter (GEVD based MWF) [70]. The source covariance matrix

is the difference of the sensor covariance matrix and the interference matrix,i.e, Rs̄s̄ = Rxx −Rv̄v̄.

It has been demonstrated in [71] that incorporating a low rank approximation based on either the

eigenvalue decomposition (EVD) of Rs̄s̄ or the generalized eigenvalue decomposition (GEVD) of

Rxx,Rv̄v̄ enhances the estimation performance of the MWF, especially in low-SNR conditions. The

GEVD-based rank-R approximation has been shown to deliver the best performance, as it effectively

selects the R ‘modes’ corresponding to the highest SNR. Of course, when the number of sources is

known, as it is in our case, we can assume M = R.

We find the generalized eigenvalues, L = [λ1, . . . , λN ], and the eigenvectors, Q = [q1, . . . , qN ]>,

of the matrix pair, (Rxx,Rv̄v̄), such that

R−1
v̄v̄Rxx = QLQ−1 (4.6)

if Rvv is invertible. Assuming the eigenvalues and vectors are sorted in descending order, the GEVD

is equivalent to a joint diagonalization of Rxx,Rv̄v̄,

Rxx = UΣUH, Rv̄v̄ = UΓUH (4.7)

Using eq. (4.6), it can be verified that U = QH, L = ΣΓ−1, Σ = QHRxxQ and Γ = QHRv̄v̄Q.

If we scale the eigenvectors, qn’s, such that QHRv̄v̄Q = IN , then we can write
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Rxx = ULUH, Rv̄v̄ = UUH (4.8)

Hence, the source correlation matrix becomes

Rs̄s̄ = Rxx −Rv̄v̄

= U(L− IN )UH
(4.9)

The rank-M approximation of Rs̄s̄ becomes U∆UH, with the last N −M entries of (L− IN ) equal

to zero

∆ = diag

(λ1 − 1), . . . , (λM − 1), 0, . . . , 0︸ ︷︷ ︸
N−M zeros


Thus, the optimum inverse filter may be written as

W ∗ = R−1
xxU∆UHEN

= (ULUH)−1U∆UHEN

= U−HL−1∆UHEN

(4.10)

where L−1∆ = diag
[
1− 1

λ1
, . . . , 1− 1

λM
, 0, . . . , 0

]
and EN = [IM×M 0M×(N−M)]

>. Thus, we

can estimate the optimal filter for each frequency bin, given the estimates of the microphone and

interference signal correlation matrices.

4.2.1 Estimation of interfering signal correlation matrix

To estimate the interference (or noise) signal for the nth mic, v̂n(k), we make use of the calibration

stage where all microphones capture one instrument at a time. For the nth mic, all but the closest

source contribute to the interference. We sum up all these M−1 sources to get the total interference

for each microphone, convert it to the STFT domain and estimate Rv̄v̄ by taking the outer product

and averaging across all time frames, similar to (4.5).
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4.2.2 Distortion vs Interference weighting

Typically in noise reduction applications, there is a tradeoff between reducing distortion in the

separated sources and cancelling interference. In recording studio applications, it is imperative

to get as little distortion as possible in the processed signals, even if it comes at the cost of less

interference cancellation. In this section, we discuss the Speech-Distortion Weighted Multichannel

Wiener filter [72] (SDW-MWF), that is parameterized to give a tradeoff between the two.

Since s̄ and v̄ are uncorrelated, the cost function in eq. (4.4) can also be written as

J(Ŵ ) = E
(
||s̄− Ŵ Hx||2

)
= E

(
||s̄− Ŵ H(s̄+ v̄)||2

)
= E

(
||s̄− Ŵ Hs̄||2

)
︸ ︷︷ ︸

ε2s̄

+E
(
||Ŵ Hv̄||2

)
︸ ︷︷ ︸

ε2v̄

(4.11)

The first term, ε2s̄, is a source distortion term, while the second term, ε2v̄, is a noise reduction term.

The Speech-Distortion Weighted Multichannel Wiener filter (SDW-MWF) [72] provides a tradeoff

between these two errors, with a trade-off parameter µ ≥ 0.

JSDW(Ŵ ) = E
(
||s̄− Ŵ Hs̄||2

)
+ µE

(
||Ŵ Hv̄||2

)
Ŵ ∗

SDW = (Rs̄s̄ + µRv̄v̄)
−1Rs̄s̄

= (Rxx + (µ− 1)Rv̄v̄)
−1(Rxx −Rv̄v̄)

(4.12)

Using eq. (4.8), the optimal weight filter can be simplified as

Ŵ ∗
SDW = U−H (L+ (µ− 1)IM )

−1
(L− IM )UHEN

= U−HΦUHEN
(4.13)

where Φ = diag
[

λ1−1
λ1+µ−1 , . . . ,

λM−1
λM+µ−1 , 0, . . . , 0

]
. When µ = 1, the two solutions are equivalent, i.e.,

ŴSDW = Ŵ and both source distortion and interference reduction get equal weighting. It has been

proved that the output SNR after noise reduction with the speech-distortion weighted multichannel

Wiener filter is always larger than or equal to the input SNR, for any filter length, for any value

of the tradeoff parameter between noise reduction and speech distortion, and for all possible speech
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and noise correlation matrices [31].

4.3 MAP Estimator - Maximum Aposteriori Probability

The MAP estimator is closely related to the ML estimator, but employs an optimization objective

with a prior distribution. It can be seen as a regularization of the ML estimator. For deriving the

MAP estimator used in this problem, we use the same model as in (2.2), and assume that the sources

are independent and identically distributed across frames with zero mean and a covariance matrix,

known a priori, i.e., s1, . . . , sT
i.i.d∼ N (0,Ps). To estimate the source covariance matrix, we can

estimate the covariance matrices of the microphone signals and the interfering signals, as described

in Section 4.10, find their generalized eigenvalues, and then use (4.9).

4.3.1 Cost function derivation

Using the same definitions of the vectors as in Section 3.1, we maximize the joint probability of

the source and the true transfer function, given the microphone signals over all frames, x1, . . . ,xT

and a noisy estimate of the initial transfer function, h̃. Then, we use Bayes’ theorem to write the

conditional probability of the source given the data as the conditional probability of the data given

the source, multiplied with the source probability.

J(s1, . . . , sT ,h) = max p(s1, . . . , sT ,h|x1, . . . ,xT , h̃)

= max p(x1, . . . ,xT , h̃|s1, . . . , sT ,h) p(s1, . . . , sT ,h)

= max p(x1, . . . ,xT |s1, . . . , sT ) p(s1, . . . , sT ) p(h|h̃)

= max

(
T∏
t=1

p(xt|st) p(st)

)
p(h|h̃)

(4.14)

As before, we minimize the negative of the log likelihood which gives us the following cost function

J(s1, . . . , sT ,h) = min

T∑
t=1

(
1

σ2
w

||xt −Hst||2 + sHt P
−1
s st

)
+

1

σ2
ν

Tr
(

(H̃ −H)H(H̃ −H)
) (4.15)
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Here, P−1
s , is an M ×M matrix that can be estimated as

P̂s
−1

= E>N
(
Q∆−1QH

)
EN (4.16)

where ∆−1 = diag

 1
λ1−1 , . . . ,

1
λM−1 , 0, . . . , 0︸ ︷︷ ︸

N−M zeros

 and λi’s are the first M generalized eigenvalues of

the microphone and interfering signal covariance matrix pair, sorted in descending order of magni-

tude.

4.3.2 Proof of convexity

In general, the sum of convex functions is convex (see Appendix A). Since we have already proved

that the MLE cost function is convex in Sec. 3.2, we only need to prove that J0 =
∑T
t=1 s

H
t P
−1
s st

is convex in st. The second derivative of J0 with respect to st is ∇2
stJ0 = P−1

s . Therefore, to

prove convexity, we only need to prove that the inverse of the covariance matrix, P−1
s , is positive-

semidefinite.

We know that Ps is an autocorrelation matrix, hence it is positive-semidefinite with non-negative

eigenvalues, β, and orthonormal eigenvectors, Q (see Appendix B).

Ps = QβQH

where β = diag(β1, . . . , βM ) The inverse of Ps is

P−1
s = QHβ−1Q

where β−1 = diag
(

1
β1
, . . . , 1

βM

)
. Since Ps is rank-M , all βi’s are positive, so are 1

βi
’s. Hence, the

matrix P−1
s exists and is positive definite. Therefore, the MAP cost function is also convex.

4.3.3 Solution

Similar to Section 3.4, we can analytically calculate the gradient of the cost function with respect

to st and H, and equate it to zero to find the optimal solution. This non-linear equation can be

solved using a numerical root finder.
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Figure 4.1: Block diagram of the proposed MAP estimator.

H∗ =

(
H̃ +

σ2
ν

σ2
w

T∑
t=1

xts
H
t

)(
I +

σ2
ν

σ2
w

T∑
t=1

sts
H
t

)−1

s∗τ = (H∗HH∗ + σ2
wP
−1
s )−1H∗Hxτ

(4.17)

With the source and microphone vectors stacked frame-wise, the optimal solution is

H∗ =

(
H̃ +

σ2
ν

σ2
w

XSH

)(
I +

σ2
ν

σ2
w

SSH

)−1

S∗ = (H∗HH∗ + σ2
wP
−1
s )−1H∗HX

(4.18)

When σw = 0 (when there is no microphone measurement noise), the MAP solution is equal to

the MLE solution. The value of σ2
w determines how much we trust the a priori covariance matrix

estimate.

4.4 Summary

In this chapter, we have proposed Bayesian methods to cancel microphone bleed. First, we have

derived the MMSE estimator (Wiener filter), and discussed ways of estimating the source signal

covariance matrix with Generalized Eigenvalue Decomposition. Then, we have extended the analysis

of Chapter 3 to derive the MAP estimator, which makes use of the a priori statistics of the source
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signals, i.e, the source covariance matrix. Finally, we have shown that the MAP cost function is also

convex, and hence the minimum is at the point where its gradient vanishes. The block diagram of

the proposed MAP estimator is given in Fig. 4.1.



Chapter 5

Example: String Quartet in a

Virtual Studio

Now that we have laid down the mathematical foundations of the microphone bleed cancellation

problem, we need to test the proposed methods against a state-of-the-art algorithm in a controlled

experimental setting. The experimental setup to gather data for analysis consists of two parts — i)

simulation of a virtual recording setup using anechoic audio samples and synthesized room impulse

responses, so that the room dimensions, materials, reverberation time and instrument and sensor

positions can be controlled accurately, and ii) recordings made in the CCRMA recording studio for

bleed cancellation in multichannel drum recordings. In this chapter, we will describe the virtual

studio setup.

5.1 Synthesized data

For a realistic recording scenario, we used a dataset of anechoic string quartet recordings from TU

Berlin [73]. The experimental setup of the anechoic recording of the quartet, with each musician

placed in each corner of an anechoic chamber, is shown in Fig. 5.1. We placed the instruments in

a virtual shoebox room of dimensions 3 × 4 × 3.25 m3. For the following analysis, we primarily

worked with two instruments – the viola (Va) was placed at (1.9, 2.5, 1.0) m and the violoncello

(Vcl) was placed at (1.7, 2.8, 0.8) m. Omnidirectional microphones were placed directly in front of

the instruments on the same axis. RIR Generator [61] was used to simulate the room acoustics

with the image-source method [26]. The reverberation time (RT60) was fixed to be 0.8 s and the

length of the impulse response generated was 128 samples at a sampling rate of 48 kHz. The short

49
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Figure 5.1: Recordings made in the anechoic chamber at TU Berlin.

length of the impulse response is adequate to capture the early reflections, which primarily affect

the cross-talk between microphones. Close-miking ensures that the effect of the room acoustics is

largely negated in the mid and high frequency range. However, the lower frequency range is still

affected by the early reflections in a room. The impulse response for each source-microphone pair

was convolved with the anechoic recordings to generate the captured microphone signals. While

the image-source method is not fool-proof, it simulates microphone cross-talk adequately because it

reconstructs the early-reflections of a shoebox room correctly.

5.2 Evaluation metrics

The evaluation was done with the the Perceptual Evaluation methods for Audio Source Separation

(PEASS) toolbox [74] which gives perceptually motivated scores for the separated sources. In the

first step, the estimation error ŝ(t) - s(t) is split into three components: target distortion, etarget(t),

interference, einterf(t) and artifacts, eartif(t).

ŝ(t)− s(t) = etarget(t) + einterf(t) + eartif(t) (5.1)

The use of objective measures based on energy ratios between the signal components, i.e., source

to distortion ratio (SDR), the source to interference ratio (SIR) and the source to artifacts ratio

(SAR), has been the standard approach in the specialized scientific community to test the quality

of extracted signals [75]. The ratios are defined as:
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ŝ = starget + einterf + enoise + eartif

SDR = 10 log10

||s||2

||einterf + enoise + eartif||2

SIR = 10 log10

||s||2

||einterf||2

SAR = 10 log10

||s+ einterf + enoise||2

||eartif||2
.

(5.2)

However, a better perceptual metric is to calculate the PEMO-Q scores [76, 77]. Four new metrics

are defined in [74] and used in this thesis for objective evaluation.

OPS = PEMO-Q(ŝ, s)

TPS = PEMO-Q(ŝ, ŝ− etarget)

IPS = PEMO-Q(ŝ, ŝ− einterf)

APS = PEMO-Q(ŝ, ŝ− eartif)

(5.3)

The overall perceptual score (OPS) gives an indication of how close the separated signal is to

the target signal. Target-related perceptual score (TPS) gives an indication of the target distortion.

Interference-related perceptual score (IPS) is an indication of how much interference has been elim-

inated from the separated signal, and Artifact-related perceptual score (APS) is an indication of the

artifacts in the separated signal. The mean scores (averaged over all instruments) are reported in

this chapter.

5.3 Experimental details

For the Short-Time Fourier Transform (STFT), we used a frame size of 1024 samples with a Hann

window, a hop size of 512 samples, and FFT length of 4096 samples. We tested our proposed MLE

and MAP estimators with three different values of the hyperparameter, σ2
w/σ

2
ν = [0, 1, 100], as well

as with the known transfer function. Three different methods of transfer function estimation were

used - spectral ratio (2.2.1), M-GCC (2.2.2) and BCI (2.2.3). The first 15 reflections were calculated

for M-GCC. The NMFLMS method was used for calibration with BCI, with λ = 0.98 and ρ = 0.2.

The MCWF parameters used were the same as in [4], with the aforementioned frame size and hop

size. For estimation of H̃, a different 2 s excerpt from the same recording was used. We provide

sound examples for an informal listening test [78]. It is to be noted that the gains of these audio

files have been normalized, so that the amplitudes lie within ±1.
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Figure 5.2: PEASS scores with spectral-ratio initialization for varying source-microphone distance.

5.4 Results

5.4.1 Effect of source-microphone distance

For the determined case, (N = M = 2), we varied the distance between the source and the micro-

phones linearly from 10− 50 cm in steps of 10 cm.

The results with the spectral ratio calibration are shown in Fig. 5.2. For the ML estimator,

the OPS, TPS and IPS of all calibration methods decline as the source-microphone distance is

increased, since the close-microphone assumption starts failing. The proposed ML estimator with

σ2
ν/σ

2
w ∈ {0, 1} outperforms MCWF by a large margin. However, performance deteriorates when the

hyperparameter value is large (σ2
ν/σ

2
w = 100). This is because the initial transfer function matrix

estimated with the spectral ratio is fairly accurate, and not trusting it leads to overfitting. In this

case, choosing a large hyperparameter value hurts us. The advantages of using optimization is not

clear in the figure; however, listening to the sound examples provided when the source-microphone
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Figure 5.3: PEASS scores with M-GCC initialization for varying source-microphone distance.
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Figure 5.4: PEASS scores with BCI initialization for varying source-microphone distance.
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Figure 5.5: PEASS scores with spectral-ratio initialization for varying number of microphones.

distance is 0.3 m, makes it obvious. Optimization gets rid of artifacts in the separated sources.

The MAP estimator performance is considerably worse than the ML estimator. This is likely

because the statistical independence criterion of the sources for calculation of the source covariance

matrix is not satisfied for the quartet. Still, when the hyperparameter is zero, the OPS, TPS and

IPS are better than those of MCWF. Performance further deteriorates as the source-microphone

distance increases.

In Fig. 5.3, the M-GCC initialization also performs well. The results for the MLE estimator

when σ2
ν/σ

2
w = 1 and the source-microphone distance is 10 cm are exceptionally good. The variance

in the scores for the MAP estimator is quite high. In Fig. 5.4, with BCI initialization, the APS is

poor. Optimization hurts the TPS and IPS.
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Figure 5.6: PEASS scores with M-GCC initialization for varying number of microphones.
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Figure 5.7: PEASS scores with BCI initialization for varying number of microphones.
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5.4.2 Effect of number of microphones

We varied the number of microphones capturing each instrument (N ∈ {1, 2, 3, 4},M = 2) to

simulate an overdetermined system. The closest mic was kept on the same axis as the source at a

distance of 20 cm, and the other microphones were distributed uniformly on an arc of angle 60◦ of

the same radius.

The results with spectral ratio calibration are shown in Fig. 5.5. For the ML estimator, the OPS,

TPS and IPS improve as the number of microphones is increased. This is expected in overdetermined

systems. The APS remains constant. Again, the performance of the ML estimator with σ2
ν/σ

2
w ∈

{0, 1} are closely matched. For the MAP estimator and σ2
ν/σ

2
w = 0, the APS score improves as

number of mics increases, but the OPS, TPS and IPS decrease. Optimization with σ2
ν/σ

2
w = 1

improves the APS significantly for the determined system (N = 1). As in the case of varying

microphone distance, the ML estimator performs better than MAP.

In Fig. 5.6, an improvement in the scores for both ML and MAP estimators are observed as

the number of microphones increases. The scores with σ2
ν/σ

2
w = 0 and σ2

ν/σ
2
w = 1 are very closely

matched. In Fig. 5.7, the improvement in scores when σ2
ν/σ

2
w = 0 is significant as the number of

microphones increase. The optimization performance is subpar in this case, as in the case with

varying source-microphone distance.

5.4.3 Effect of number of sources

For a determined system (N = M), we varied the number of sources, M ∈ {2, 3, 4} to include all four

instruments in the quartet. The four instruments — viola, violoncello and two violins were virtually

placed at locations (1.9, 2.5, 1.0), (1.7, 2.8, 0.8), (1.3, 2.8, 1.0), (1.1, 2.5, 1.0) respectively. The virtual

microphones were placed at a distance of 20 cm from the sources.

The mean perceptual evaluation scores of the separated sources with the spectral ratio calibration

are shown in Fig. 5.8. The OPS, TPS and IPS of the ML estimator show a decreasing trend as the

number of sources increases, which is expected. However, the APS score remains fairly constant,

which is desired. MCWF outperforms the MLE in terms of OPS when M ∈ {3, 4}, but the rest of

its scores are sub-par. Similarly, a decreasing trend in the scores is seen with the MAP estimator as

the number of sources increases. The optimization improves the APS in all cases.

In Fig. 5.9, with the ML estimator and M-GCC calibration, the TPS and APS outperform those

of the MCWF. Again, for the MLE estimator, the scores with σ2
ν/σ

2
w = 0 and σ2

ν/σ
2
w = 1 are very

closely matched. With BCI initialization, the IPS shows a surprising improvement with increasing

sources when σ2
ν/σ

2
w = 0. The performance is especially good when the number of sources is 4.
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Figure 5.8: PEASS scores with spectral ratio initialization for varying number of sources.
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Figure 5.9: PEASS scores with M-GCC initialization for varying number of sources.
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Figure 5.10: PEASS scores with BCI initialization for varying number of sources.
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Figure 5.11: PEASS scores with spectral ratio initialization for varying volume and reverberation
times.

Optimization hurts the MAP estimator scores.

5.4.4 Effect of reverberation time

We varied the reverberation time, RT60, of our virtual studio logarithmically from 0.5 s to 8 s. This,

in turn, affects the reflection coefficients of the wall materials according to Sabine’s formula [79],

RT60 =
24 ln 10V

c
∑6
i=1 Si(1− β2

i )
(5.4)

where V is the volume of the room, c is the speed of sound in air and and βi and Si denote the

reflection coefficient and the surface of the ith wall, respectively. The scores were observed to be

independent of the RT60. This is because for a fixed volume, a change in RT60 only affects the late

reverberation tail, but the early reflections are unaffected.
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However, when the volume of the room is changed along with the RT60, the gains and times of

arrival of the early reflections are impacted. The reflections are now more sparsely distributed in

time. To replicate this scenario, we simulated cube-shaped rooms ranging from 20−−200 m3 having

RT60s on a log scale, from 0.5−−8 s. A longer sequence (512 samples) of the RIR was convolved with

the anechoic viola and violoncello recordings. The MAP, MLE and MCWF estimators were then

applied to the data, with the spectral-ratio method used for initialization, since it was observed to

give the best results. The results are shown in Fig. 5.11. The performance of all estimators remains

fairly consistent, with a slight increase in scores as reverberation time increases. MAP/ML estimators

with σ2
ν/σ

2
w = 100 outperform MCWF in terms of TPS and IPS, whereas the estimators with

σ2
ν/σ

2
w = {0, 1} outperform MCWF in terms of APS. A trade off between interference cancellation

and quality preservation is inevitable, as in the other cases.

5.5 Takeaways

• MLE consistently performs better than MCWF in regards to the APS. It performs worse than

MCWF with respect to the IPS as the number of sources increase.

• MAP performs worse than MLE in terms of the IPS. As discussed before, this is due to the

statistical dependence of the quartet instruments.

• There is always a trade-off between IPS and APS. More interference cancellation is achieved

at the cost of quality.

• The OPS, TPS and IPS of the ML estimator are closely matched for σ2
ν/σ

2
w = 0, 1. This is

only because the initialization methods work well for the image-source generated RIRs. In a

real room, estimation with σ2
ν/σ

2
w = 0 will underperform.

• Optimization improves the APS for all estimators at the cost of computation time.

• Performance worsens with increasing source-mic distance.

• Performance improves with increasing number of microphones capturing each source.

• Performance worsens with increasing number of sources.

• Performance is largely independent of room reverberation time.



Chapter 6

Example: Drum Bleed Suppression

In this chapter, the proposed methods for microphone bleed cancellation are tested on a far more

complex real-life recording scenario. We record a drum kit and try to isolate each part of the kit.

This particular scenario is challenging because drum spectra are very broad, spanning from the low-

frequency kick drum to the high-frequency crash cymbals. The transients need to be reconstructed

without any time-smearing. Moreover, all the different parts are located very close to each other.

As a result, even with directional microphones, complete isolation is not possible. Some popular

methods to reduce drum bleed include NMF based algorithms, such as the commercially available

Drumatom [42] and [80]. Live drum separation using probabilistic spectral clustering has been

explored in [81].

6.1 Studio recordings

A drum-kit was recorded at the CCRMA recording studio. Microphone placement guidelines for

recording drum kits are suggested in [82]. Our recording setup is shown in Fig. 6.1. The microphones

used to record the various drum parts are listed in Table 6.1. The overhead mics record the crash

cymbals, as well as the room response.

Drum part Mic Dynamic/Condensor Directivity
Floor tom, Rack tom Rhode NT55 Condensor Cardioid

Crash cymbals AKG C414 pair Condensor Cardioid
Snare, Hi hat Shure SM57 Dynamic Cardioid

Kick Sennheiser MD421 Dynamic Cardioid

Table 6.1: Microphones used to record drum kit.

64
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Figure 6.1: Microphone setup for recording drum kit.
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6.2 Calibration

For estimation of the initial transfer function matrix, H̃(ω), a single-input multi-output scenario is

required. After the microphone gains were adjusted, the drummer was asked to strike each drum

part separately as it was captured by all the mics. The process was repeated for all the drum parts.

A single drum hit was extracted for each part of the kit from the signal captured by its closest

microphone. First, a leaky-integrator was used to detect the signal level [83], with a fast attack time

to detect sharp transients, and a slow decay time. The signal level, λ̂, is

if x(n) > λ̂n :

λ̂n+1 = λ̂n + (1− e
−1
τafs )(|x(n)| − λ̂n)

else :

λ̂n+1 = λ̂n + (1− e
−1
τrfs )(|x(n)| − λ̂n)

(6.1)

where x(n) is the current signal sample, τa = 10 ms is the attack time constant, τr = 100 ms is

the release time constant and fs is the sample rate. The detected level was smoothed by a 3 point

moving average filter. The peak positions of the smoothed level were marked as the onset times.

The offset times were marked as the time taken for the peak level to fall to exp
(
− 1

2

)
of its starting

value (2 time constants away from the peak). The onsets detected for the kick drum and snare drum

are shown in Fig. 6.2. The same onset and offset times were used to extract the source from all the

other microphones. Repeating the process for each drum part gave us 7 calibration files for each

of the 7 different parts. These files were used for initial transfer function calculation, as well as for

interference correlation matrix estimation for the MAP estimator.

6.3 Results

The MAP and ML estimators were initialized with spectral ratio, M-GCC and BCI calibration for

three different hyperparameter values each, σ2
ν/σ

2
w = {0, 1, 100}. This yielded a total of 9 different

outcomes for each estimator. The optimization was run for a few iterations with a maximum function

count of 104 on a 4 core Intel i5 CPU. The recorded and separated audio files are available at [84].

The proposed estimators with optimization are good at preserving the quality of the target signal

without introducing any audible artifacts. They successfully reduce high frequency bleed from the

cymbals and the hi-hat. Although the MCWF estimator does a better job at suppressing interference,

it does so by compromising the quality of the separated signals. From a practical standpoint, studio

engineers and producers almost always prefer separated signals with the least possible distortion.
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Figure 6.2: Onset and offset detection.

Herein, we think that our proposed method outperforms the state of the art MCWF estimator.

The initial and optimized transfer functions for the rack tom, for various hyperparameter values,

are shown in Figs. 6.3, 6.5, 6.7. For optimization with σ2
ν/σ

2
w = 1, the transfer functions share a

similar band-stop filter shape, with a stop band from 100− 1000 Hz, regardless of the method used

for initialization. This shape is speculated to represent the room response, as it remains largely

independent of the source and microphone positions. The MAP and MLE transfer functions for this

hyperparameter value are nearly identical. For optimization with σ2
ν/σ

2
w = 100, there is a dip in the

lower frequency gains. The response from the source to the closest microphone remains flat post

optimization.

The spectrograms of the recorded and separated signals for σ2
ν/σ

2
w = {0, 1}, normalized to−14 dB

LUFS [85], are shown in Figs. 6.4, 6.6, 6.8. The figures show that the high frequency bleed from

the cymbals and hi-hat is suppressed. Mid-frequency bleed from the snare drum is mitigated, but

still audible. This is because the spectrum of the rack tom overlaps significantly with that of the

snare drum. No audible distortion is introduced in any the signals. The optimization results are

consistent over the three different methods of initialization. Using the H̃ directly for estimation

of the sources produces severely distorted results. Hence, optimization is essential in any real-life

MIMO recording scenario.
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(b) MLE σ = 1
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(e) MAP σ = 100

Figure 6.3: Initial and optimized transfer functions for the rack tom with spectral ratio calibration.
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(a) MLE (b) MAP

Figure 6.4: Spectrograms for the recorded and separated rack tom with spectral ratio calibration.
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Figure 6.5: Initial and optimized transfer functions for the rack tom with M-GCC calibration.
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(a) MLE (b) MAP

Figure 6.6: Spectrograms for the recorded and separated rack tom with M-GCC calibration.
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Figure 6.7: Initial and optimized transfer functions for the rack tom with BCI calibration.
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(a) MLE (b) MAP

Figure 6.8: Spectrograms for the recorded and separated rack tom with BCI calibration.

6.3.1 Listening test

An online listening test was conducted over the Qualtrics survey platform (because of remote work

due the the COVID-19 pandemic). Participants were given an instruction sheet that explained the
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Figure 6.9: Listening test results.

goal of the experiment, and were asked to be wear over-the-ear headphones while taking the test

in a quiet listening environment. They could adjust the volume to a level that felt comfortable for

them.

Participants were presented with 4 sets of drum sounds – floor tom, kick, snare and rack tom.

Each set contained an audio clip of the target signal, i.e., what the clean source itself would sound

like without any cross-talk, (obtained from the calibration files). All files were adjusted to have a

loudness of -14dB LUFS. Then, two questions were asked, one pertaining to the amount of cross-

talk/interference reduction, and the other on the perceptual quality of the target signal. These

questions correlate to the IPS and APS scores from the PEASS toolbox. Participants were asked

to give a rating of 0 to 100, 0 being the lowest score. Six options were presented to the participant

: the signal recorded by the closest microphone, MCWF, MLE with σ2
ν/σ

2
w = 0, 1 and MAP with

σ2
ν/σ

2
w = 0, 1. The options were randomly shuffled for each question. For MLE and MAP, the

spectral ratio method was used for calibration. Participants were given a training question, with

instructions on how to rate.

At the end of the test, participants’ responses were anonymized and saved, along with information

about their age, gender, years of experience with audio engineering, hearing impairment, experience

with a listening test and model of headphones used. Only a nickname was used as a unique identifier,

and the participants were renumerated with gift cards once they contacted me via email with their

nicknames and unique completion code. The experiment was approved by the university’s Internal

Review Board.

A total of 18 subjects participated in the test, 9 males and 9 females in an age range of 18− 54

years. No one reported any hearing impairment, and everyone took the test over headphones in a
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quiet listening environment. All but 2 participants had former experience with sound recording and

production. To analyze the results, a one-way ANOVA test was conducted with the different esti-

mators as groups. The results had a p-value < 0.01, showing statistical significance. The box-plots

of the ratings for all 4 test samples are shown in Fig. 6.9. As expected, the recorded signal (hid-

den reference) has the minimum amount of cross-talk cancellation and the best perceptual quality.

MCWF performs the best in terms of bleed suppression but does so at the cost of compromising the

signal’s perceptual quality. Among the other estimators, MAP with σ2
ν/σ

2
w = 100 performs the best

in terms of both cross-talk cancellation and perceptual quality.



Chapter 7

Conclusions

7.1 Summary

This thesis has proposed novel DSP methods for suppressing microphone cross-talk or ‘bleed’

in multi-microphone ensemble recordings. While cross-talk cancellation methods based on Non-

negative Matrix Factorization [12, 49], adaptive filtering [47] and Wiener filtering [4, 9] exist in the

literature, we explored the simultaneous estimation of the relative transfer function matrix from

each source to each microphone, and the interference-free, desired source signal, within an opti-

mization framework. We showed that the cost functions we derive are statistically optimal, in a

Bayesian and a non-Bayesian sense. Furthermore, we showed that the cost functions are convex,

and the computations can be performed on a multi-core GPU or CPU. We proposed a calibration

stage during sound-check where one instrument is active at a time, thereby reducing a complicated

MIMO system to SIMO for initial transfer function estimation. The proposed methods were tested

against a state-of-the-art multichannel Wiener filter algorithm on a simulated dataset of anechoic

string quartet recordings placed in a virtual studio, as well as on drums recorded in the CCRMA

studio. The major findings of this thesis are being prepared for publication as a journal manuscript

[86]. The chapter-wise breakdown of this thesis is as follows:

• Chapter 1 - We introduced the microphone bleed cancellation problem and why it is impor-

tant to the audio engineering community. We discussed three broad categories of algorithms

for audio source separation — blind source separation, beamforming and adaptive noise can-

cellation. Then, we discussed in detail some existing methods for close-microphone bleed

cancellation. To conclude the chapter, we delineated the goals of the thesis.

• Chapter 2 - We introduced the mathematical model and explained the physically motivated

76



CHAPTER 7. CONCLUSIONS 77

reasons for our modeling choices. We proposed a calibration stage for the estimation of a noisy

initial transfer function matrix. This is a novel addition to the existing literature which often

does not make use of this readily available information while doing source separation. We dis-

cussed three different methods of estimating this matrix from a SIMO system — spectral-ratio,

Modified GCC and NMFLMS. We tested the discussed methods to identify the early response

of an RIR created with the image-source method. Both the spectral ratio and NMFLMS

methods performed identically.

• Chapter 3 - We derived the Maximum Likelihood estimator assuming the microphone and

initial RTF to be normally distributed random vectors. This estimator simultaneously solves

for the sources and the relative transfer function matrix. We discussed the role of a hyper-

parameter that decides how much we trust the initial estimate of the transfer functions. We

proved that the ML cost function is convex by showing that the Hessian matrix is positive

semi-definite. We also derived the Fisher information matrix, and showed how the CRB is

determined by the number of microphones. We estimated the optimal source by finding the

roots of the gradient of the cost function using a numerical root finder and showed that the

computations can be vectorized and parallelized over the frequency bins for improvements in

speed. The contributions of this chapter are all novel and have been published in [62].

• Chapter 4 - We started this chapter by deriving the MMSE estimator, the multichannel

Wiener filter (MWF), and discussed the Generalized Eigenvalue Decomposition (GEVD) based

MWF. Then, we expanded the previously proposed ML estimator to have a Bayesian prior.

This prior, the source covariance matrix, was derived using GEVD principals. Following

the derivations from Chapter 3, we derived the Maximum Aposteriori Probability (MAP)

estimator when the source vector is normally distributed with a given covariance matrix.

The MAP estimator and the GEVD based source covariance matrix estimation are the main

contributions of this chapter.

• Chapter 5 - We placed a virtual string quartet in a shoebox room, and simulated microphone

bleed by varying a number of parameters, such as, the source-microphone distance, the number

of microphones recording each source, the number of sources and room reverberation time. We

tested the proposed estimators against the MCWF for a range of hyperparameter values and

report the overall (OPS), target-related (TPS), interference-related (IPS) and artifact-related

perceptual scores (APS) using the PEASS toolbox. The ML estimator gave high values of IPS

and APS.

• Chapter 6 - We tested our algorithms on a drum kit recorded in the CCRMA studio. Each

part of the kit was miked separately. There was significant bleed from the snare, hi-hat and

cymbals. We explained how we calibrate the recordings to find the initial transfer functions,

and presented the results of our experiments. We conducted a subjective listening test with
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18 participants to evaluate the interference-related and artifact-related scores in the separated

signals. The results showed that our method outperforms MCWF in retaining the perceptual

quality of the processed signal, while reducing a few decibels of cross-talk.

7.2 Future work

• While the time-invariant transfer function assumption yields smooth results, in reality, there

are small variations in the transfer function with time which needs to be captured by a slowly

time-varying model.

• An improvement needs to be made to the amount of cross-talk cancellation while maintaining

the same level of perceptual clarity in the separated sources.

• A faster C++ implementation of the algorithm that runs on a GPU can shed light on its

performance capabilities. Currently, it is implemented in MATLAB, which is slow.

• The MAP estimator performs better on the drum-kit than the string quartet recordings. This is

because the drums are broadband, and the covariance matrix of each drum part is uncorrelated

with the others. Therefore, the source covariance matrix derivation in Section 4.2, which

assumes that the source and interference matrices are independent, is correct. The quartet,

on the other hand, has overlapping harmonic sources which do not satisfy this assumption.

Here, a pre-processing stage consisting of a multi-pitch detector can improve the results if

pitch-based harmonic constraints are imposed on the different sources’ frequencies.

• The proposed methods can be tested on more ensemble recordings to check for performance

robustness with different genres of music and instruments. Furthermore, the listening test

should be re-done in a controlled environment.

• Exploration of cross-talk cancellation with ambisonics microphones is an interesting direction

for future research. The increasing popularity of these microphones can lead to new research

directions by exploiting the inherent orthogonality of the spherical harmonic coefficients to do

direction-based source separation.



Appendix A

Proof that sum of convex functions

is convex

A function f : Rn → R is convex if for all x1, x2 ∈ Rn in its domain, and for all 0 ≤ α ≤ 1,

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (A.1)

Geometrically, this means the line segment connecting (x1, f(x1)) to (x2, f(x2)) must sit above the

graph of f . Let there be another convex function g : Rn → R for all x1, x2 ∈ Rn in its domain, we

also have

g(αx1 + (1− α)x2) ≤ αg(x1) + (1− α)g(x2) (A.2)

Now, for the function, h = f + g : Rn → R,

h(αx1 + (1− α)x2) = f(αx1 + (1− α)x2) + g(αx1 + (1− α)x2)

≤ αf(x1) + (1− α)f(x2) + αg(x1) + (1− α)g(x2)

≤ α(f(x1) + g(x1)) + (1− α)(f(x2) + g(x2))

≤ αh(x1) + (1− α)h(x2)

(A.3)

Therefore, we see that h = f + g is also convex.
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Proof that eigenvalues of

positive-semidefinite matrices are

non-negative

A matrix A ∈ RN×N , is positive-semidefinite if it is symmetric and if ∀ v ∈ V,v>Av ≥ 0. Let λ be

an eigenvalue of A. Then, for eigenvector u,

Au = λu (B.1)

Pre-multiplying both sides by u>, we get

u>Au = u>λu

u>Au = λu>u
(B.2)

By definition, u>Au ≥ 0. Therfore, λu>u ≥ 0. The quadratic term, u>u is non-negative by

default. This implies that λ ≥ 0 for the inequality to hold. We can prove this for all the eigenvalues

of A.
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Publications at CCRMA

1. “Grouped Feedback Delay Networks for Modeling of Coupled Spaces” - O. Das, J.S Abel in

J. Audio Eng. Soc. - JAES, vol 69 no. 7/8, pp.486-496, 2021.

2. “Room Impulse Response Interpolation from a Sparse Set of Measurements Using a Modal

Architecture” - O. Das, P. Calamia, S.V.A Gari in Proc. of IEEE 46th Int. Conf. on Acoust.,

Speech, Signal Process., ICASSP 2021.

3. “Microphone Cross-talk Cancellation in Ensemble Recordings with Maximum Likelihood Es-

timation” - O. Das, J.O Smith, J.S Abel in Proc. of 150th Audio Eng. Soc. Conv., AES

2021.

4. “Delay Network Architectures for Room and Coupled Space Modeling” - O. Das, J.S Abel,

E.K Canfield-Dafilou in Proc. of 23rd Int. Conf. Digit. Audio Effects, DAFx 2020.

5. “Improved Real-time Monophonic Pitch Tracking with the Extended Complex Kalman Filter”

- O. Das, J.O. Smith, C. Chafe in J. Audio Eng. Soc. - JAES, vol 68 no.1/2, pp.78-86, 2020.

6. “On the Behavior of Delay Network Reverberator Modes” - O. Das, E.K Canfield-Dafilou,

J.S Abel in Proc. of IEEE Workshop Appl. Signal Process. Audio, Acoust., WASPAA 2019.

7. “Improved Carillon Synthesis” - M.Rau, O. Das, E.K Canfield-Dafilou in Proc. of 22nd Int.

Conf. Digit. Audio Effects, DAFx 2019.

8. “FAST MUSIC - An efficient implementation of the MUSIC algorithm for frequency estimation

of approximately periodic signals” - O. Das, J.S Abel, J. O. Smith in Proc. of 21st Int. Conf.

on Digit. Audio Effects, DAFx 2018.
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9. “Analyzing and Classifying Guitarists from Rock Guitar Solo Tablature” - O. Das, B. Kaneshiro,

T. Collins in Proc. of 15th Int. Conf. on Sound, Music Comput., SMC 2018.

10. “An Infinite Sustain Effect Pedal Designed for Live Guitar Performance” - M. Rau, O. Das

in Proc. of 143rd Audio Eng. Soc. Conv., AES 2017.

11. “Real-time Pitch Tracking in Audio Signals with the Extended Complex Kalman Filter”- O.

Das, J.O. Smith, C. Chafe in Proc. of 20th Int. Conf. Digit. Audio Effects, DAFx 2017.
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[25] I. Dokmanić, R. Scheibler, and M. Vetterli, “Raking the cocktail party,” IEEE journal of selected

topics in Signal Processing, vol. 9, no. 5, pp. 825–836, 2015.

[26] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room acoustics,”

The Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943–950, 1979.

[27] B. Widrow, J. McCool, and M. Ball, “The complex LMS algorithm,” Proceedings of the IEEE,

vol. 63, no. 4, pp. 719–720, 1975.

[28] M. B. Malik and M. Salman, “State-space least mean square,” Digital Signal Processing, vol. 18,

no. 3, pp. 334–345, 2008.

[29] M. H. Hayes, “9.4: Recursive least squares,” Statistical Digital Signal Processing and Modeling,

vol. 541, p. 445, 1996.

[30] M. B. Malik, “State-space RLS,” in 2003 IEEE International Conference on Acoustics, Speech,

and Signal Processing, 2003. Proceedings.(ICASSP’03)., vol. 6, pp. VI–645, IEEE, 2003.

[31] S. Doclo and M. Moonen, “On the output SNR of the speech-distortion weighted multichannel

wiener filter,” IEEE Signal Processing Letters, vol. 12, no. 12, pp. 809–811, 2005.

[32] R. E. Kalman et al., “A new approach to linear filtering and prediction problems,” Journal of

Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[33] O. Das and C. Chafe, “Real-time pitch tracking in audio signals with the extended complex

Kalman filter,” in International Conference on Digital Audio Effects, DAFx, vol. 20, 2017.



BIBLIOGRAPHY 86

[34] O. Das, J. O. Smith III, and C. Chafe, “Improved real-time monophonic pitch tracking with the

extended complex Kalman filter,” Journal of the Audio Engineering Society, vol. 68, no. 1/2,

pp. 78–86, 2020.

[35] K. Paliwal and A. Basu, “A speech enhancement method based on Kalman filtering,” in

ICASSP’87. IEEE International Conference on Acoustics, Speech, and Signal Processing,

vol. 12, pp. 177–180, IEEE, 1987.

[36] O. Das, B. Goswami, and R. Ghosh, “Application of the tuned Kalman filter in speech enhance-

ment,” in IEEE First International Conference on Control, Measurement and Instrumentation

(CMI), vol. 1, pp. 62–66, 2016.
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