
PAPERSO. Das, J. O. Smith III and C. Chafe, “Improved Real-Time Monophonic
Pitch Tracking with the Extended Complex Kalman Filter”
J. Audio Eng. Soc., vol. 68, no. 1/2, pp. 78–86, (2020 January/February.).
DOI: https://doi.org/10.17743/jaes.2019.0053

Improved Real-Time Monophonic Pitch Tracking
with the Extended Complex Kalman Filter

ORCHISAMA DAS, AES Student Member
(orchi@ccrma.stanford.edu)

, JULIUS O. SMITH III, AES Fellow
(jos@ccrma.stanford.edu)

, AND CHRIS CHAFE
(cc@ccrma.stanford.edu)

Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, USA

This paper proposes a real-time, sample-by-sample pitch tracker for monophonic audio
signals using the Extended Kalman Filter in the complex domain (Extended Complex Kalman
Filter). It improves upon the algorithm proposed by the same authors in a previous paper [1]
by fixing the issue of slow tracking of rapid note changes. It does so by detecting harmonic
change in the signal and resetting the filter whenever a significant harmonic change is detected.
Along with the fundamental frequency, the ECKF also tracks the amplitude envelope and
instantaneous phase of the input audio signal. The pitch tracker is ideal for detecting ornaments
in solo instrument music—such as slides and vibratos. The improved algorithm is tested to
track pitch of bowed string (double-bass), plucked string (guitar), and vocal singing samples.

0 INTRODUCTION

Pitch is a perceptual feature [2] that roughly relates to
the fundamental frequency of the sound wave under con-
sideration. Pitch tracking algorithms aim to track the evo-
lution of fundamental frequency with time. Pitch tracking
in speech and music has been an active area of research
[3], with applications in speech recognition and automatic
music transcription.

Algorithms for monophonic pitch detection can be clas-
sified into three broad categories—time domain methods,
frequency domain methods, and statistical methods. Time
domain methods based on the zero-crossing rate and au-
tocorrelation function are particularly popular. One exam-
ple of this is the YIN [4] estimator, which makes use of
a modified autocorrelation function to accurately detect
periodicity in signals. Among frequency domain meth-
ods, the best known techniques are cepstrum [5], har-
monic product spectrum [6], and an optimum comb fil-
ter algorithm [7]. Statistical methods include the maxi-
mum likelihood pitch estimator [6, 8], more recent neu-
ral networks [9, 10], and hidden Markov models [11].
Combinations of these methods include pYIN (probabilis-
tic YIN) [12], which uses multiple pitch candidates from
YIN with associated probabilities and feeds it to a Hid-
den Markov model, and the Extended Kalman filter based
pitch trackers proposed in [1, 13] that are a combination
of statistical methods and frequency domain methods. The
state-of-art in monophonic pitch tracking is CREPE [10],
which uses a deep convolutional network. It is to be noted
that multi-pitch estimation in a polyphonic context is a

more complex problem, and the tools used to tackle it are
different [14].

In [15] Cuadra et al. discuss the performance of various
pitch detection algorithms in real-time interactive music.
They establish the fact that although monophonic pitch de-
tection seems like a well-researched problem with little
scope for improvement, that is not true in real-time appli-
cations. Some of the most common issues in real time pitch
tracking are optimization, latency, and accuracy in noisy
conditions. The Extended Complex Kalman filter (ECKF)
based pitch tracker developed in [1] overcomes some of
these limitations. It has low latency, is robust to the pres-
ence of noise, and yields pitch estimates on a fine-grained
sample-by-sample basis.

The ECKF was originally proposed by Dash et al. in [16]
to track frequency fluctuations in a 60 Hz power signal. The
ECKF is ideal for use in real-time, with a high tolerance
for noise. The complex multiplications can be carried out
on a floating point processor. The ECKF simultaneously
tracks fundamental frequency, amplitude, and phase in the
presence of harmonics and noise. Of course, several modi-
fications need to be made before applying it to track pitch
in audio signals, such as detecting silent frames that have
no pitch, initializing the filter for fast convergence, and an
adaptive process noise to accurately detect fine changes in
pitch. Perhaps, the biggest application of the ECKF pitch
tracker is detecting ornaments—such as glissando, vibrato,
trill, etc. Such techniques are essential in adding expres-
sion to a musical performance. Playing technique detection
[17] is an important task in MIR in which pitch detection
is usually the first step.

78 J. Audio Eng. Soc., Vol. 68, No. 1/2, 2020 January/February

PAPERS ECKF PITCH TRACKING

However, the biggest disadvantage of the method pro-
posed in [1] was that it could not track fast note changes.
This is due to the inherent latency of convergence in Kalman
tracking [18]. In this paper we propose an improvement
by devising a method to detect harmonic change and re-
initializing the filter every time a significant change in pitch
is detected. This improves performance significantly and
gets rid of the lag in estimated pitch. We also propose a
more accurate fundamental frequency estimation method
to initialize the filter.

The rest of this paper is organized as follows: in Sec. 1
we give details of the model used for ECKF pitch tracking.
In Sec. 2 details of its implementation are given, including
methods for silent frame and harmonic change detection,
calculation of initial estimates for attaining steady state
values quickly, resetting the error covariance matrix, back-
tracking to avoid transient errors, and an adaptive process
noise variance calculation based on the measurement resid-
ual. Sec. 3 has the results of running the ECKF pitch tracker
on double bass, guitar, and vocal singing samples. It is also
compared to YIN and CREPE pitch trackers. We discuss
some parameter selection details and conclude the paper in
Sec. 5 and delineate the scope for future work.

1 MODEL AND EQUATIONS

1.1 Model
We make use of the sines+noise model for music [19] to

derive our state space equations. Since the model is non-
linear, we use the extended Kalman filter [20], which lin-
earizes the function about the current estimate by using its
Taylor series expansion up to the first order. Higher order
terms are ignored.

Let there be an observation yk at time instant k, which is
a sum of additive sines and a measurement noise.

yk =
N∑

i=1

ai cos (ωi tk + φi) + vk (1)

where ai, ωi and φi are the amplitude, frequency, and phase
of the ith sinusoid and vk is a normally distributed Gaussian
noise v ∼ N(0, σ2

v), which is the measurement noise—
usually background noise picked by the microphone. σ2

v

is the measurement noise variance—typically given by the
SNR. If we ignore the partials and only take into account
the fundamental, Eq. (1) reduces to

yk = a1 cos (ω1kTs + φ1) + vk (2)

where a1, ω1 and φ1 are the fundamental amplitude, fre-
quency, and phase respectively and Ts is the sampling in-
terval. The state vector is constructed as

xk =
⎡
⎣ α

uk

u∗
k

⎤
⎦ (3)

where

α = exp(jω1Ts)

uk = a1 exp(jω1kTs + jφ1)

u∗
k = a1 exp(− jω1kTs − jφ1)

(4)

This particular selection of state vector ensures that we can
track all three parameters that define the fundamental—
frequency, amplitude, and phase. The relative advantage of
choosing this complex state vector has been described in
[16]. The state vector estimate update rule xk+1 relates to xk

as ⎡
⎣ α

uk+1

u∗
k+1

⎤
⎦ =

⎡
⎣1 0 0

0 α 0
0 0 1

α

⎤
⎦

⎡
⎣ α

uk

u∗
k

⎤
⎦

xk+1 = f (xk) + wk

f (xk) =
[
α αuk

u∗
k
α

]T

(5)

yk relates to xk as

yk = H xk + vk

H = [
0 0.5 0.5

] (6)

where H is the observation matrix and wk is the process
noise. In our model, the process noise can be assumed to be
filtered white noise that represents the residual that remains
after removing the harmonic content of the signal. We can
see that

H xk = a1

2
[exp (jω1kTs + jφ1) + exp (− jω1kTs − jφ1)]

= a1 cos (ω1kTs + φ1) (7)

1.2 EKF Equations
The recursive Kalman filter equations aim to minimize

the trace of the error covariance matrix. Each iteration re-
duces the variance of x̂k|k−1 until it converges. At each
time-step k, the EKF equations are as follows

Kk = P̂k|k−1 H∗T [H P̂k|k−1 H∗T + σ2
v]−1 (8)

x̂k|k = x̂k|k−1 + Kk(yk − H x̂k|k−1) (9)

x̂k+1|k = f (x̂k|k) (10)

P̂k|k = (I − Kk H)P̂k|k−1 (11)

P̂k|k+1 = Fk P̂k|k F∗T
k + σ2

w I (12)

where Fk is the Jacobian given by

Fk = ∂ f (xk)

∂xk

∣∣∣∣
xk=x̂k|k

=

⎡
⎢⎣

1 0 0
x̂k|k(2) x̂k|k(1) 0
− x̂k|k (3)

x̂2
k|k (1)

0 1
x̂k|k (1)

⎤
⎥⎦

(13)

• x̂k|k−1, x̂k|k, x̂k|k+1 are the a priori, current and a pos-
teriori state vector estimates respectively.

• P̂k|k−1, P̂k|k, P̂k|k+1 are the a priori, current and a
posteriori error covariance matrices respectively.

• Kk is the Kalman gain that acts as a weighting factor
between the observation yk and a priori prediction
x̂k|k−1 in determining the current estimate.

• σ2
v is the measurement noise variance, which is fixed

to be 1, as in [16]. Ideally, this should depend on the
SNR of the measurement. A lower SNR would give
a higher measurement noise variance.

J. Audio Eng. Soc., Vol. 68, No. 1/2, 2020 January/February 79

DAS ET AL. PAPERS

• σ2
w is modeled as the process noise variance and

I ∈ C
3×3 is an identity matrix.

• Initial state vector and error covariance matrix are
denoted as x̂1|0 and P̂1|0 respectively.

From Eq. (4) the fundamental frequency, amplitude, and
phase estimates at instant k can be calculated as

f1,k = ln (x̂k|k(1))

2πjTs

a1,k = √
x̂k|k(2) × x̂k|k(3)

φ1,k = 1

2 j
ln

(
x̂k|k(2)

x̂k|k(3)x̂k|k(1)2k

) (14)

2 IMPLEMENTATION DETAILS

2.1 Detection of Silent Frames
It is important to keep track of pitch-off events in the sig-

nal because the estimated frequency for such silent regions
should be zero. Moreover, whenever there is a transition
from pitch-off to pitch-on, the Kalman filter error covari-
ance matrix needs to be reset. This is because the filter
quickly converges to a steady state value, and as a result the
Kalman gain Kk and error covariance matrix P̂k|k settle to
very low values. If there is a sudden change in frequency of
the signal (which happens at note onset), the filter will not
be able to track it unless the covariance matrix is reset.

To keep track of silent regions, we divide the signal into
non-overlapping frames. In real-time processing, this is eas-
ily achieved by working with audio buffers. One way to de-
termine if a frame is silent or not is to calculate its energy.
The energy of a frame is given as the sum of the square of
all the signal samples in that frame. If the energy is below
–50 dB, then the frame is classified to be silent.

However, for noisy input signals, the energy in silent
frames is significant. To find silent frames in noisy signals,
we make use of the fact that noise has a fairly flat power
spectrum. The power spectral density (PSD) of the observed
signal, �yy, is given as

�yy(e jω) =
∞∑

n=−∞
φyy(n)e− jωn (15)

where φyy(n) is the autocorrelation function of the input
signal y, given as

φyy(n) =
∞∑

m=−∞
y(m)y(n + m). (16)

The power spectrum is the DTFT of the autocorrelation
function and one way of estimating it is Welch’s method
[21] which makes use of the periodogram. Since we are
dealing with very short frames here of the order of a few
milliseconds, an alternative is to estimate the autocorre-
lation function and take its FFT after zero-padding by a

Fig. 1. Spectral flatness varying across frames. A high value indi-
cates a silent frame.

factor ≥ 5. The spectral flatness is defined as the ratio of
the geometric mean to the arithmetic mean of the PSD.

spf =
K

√∏K−1
k=0 �̂yy(e jωk)

1
K

∑K−1
k=0 �̂yy(e jωk)

(17)

�̂yy(e jωk) is the estimated power spectrum for K frequency
bins covering the range [–π, π].

For white noise v ∼ N(0, σ2
v) corrupting the measurement

signal, y, the silent frames of y will have the following
properties

φyy(n) = σ2
vδ(n)

�yy(e jω) = σ2
v∀ω ∈ [−π,π]

spf =
K
√

σ2K
v

1
K (Kσ2

v)
= 1

(18)

Therefore, for each frame, we calculate the spectral flatness
[22]. If spectral flatness ≥th1, then the frame is classified to
be silent. Fig. 1 shows spectral flatness v/s frame number
for an audio file containing a single note preceded and
followed by some silence.

2.2 Resetting the Kalman Filter
In [1] the error covariance matrix was reset and initial es-

timates were re-calculated only when there was a transition
from pitch-off to pitch-on event (silent frame to non-silent
frame). However, the error covariance matrix should be
reset and the filter re-initialized whenever there is a signif-
icant change in pitch. Otherwise, the filter cannot track fast
pitch changes; this was one of the main drawbacks of the
method proposed in [1]. To fix this problem we implement
a harmonic change detector and reset the filter whenever a
significant harmonic change is detected.

2.2.1 Initial F0 Estimate
In [1] we simply looked at the first peak in the magnitude

spectrum of a frame to calculate the initial F0 estimate. We
use a more sophisticated method here by looking at the first
few peaks (NP) in the magnitude spectrum. We multiply
the magnitude spectrum with a slowly tapering Poisson

1th is a threshold ≥0.5

80 J. Audio Eng. Soc., Vol. 68, No. 1/2, 2020 January/February

PAPERS ECKF PITCH TRACKING

window, w(n) [23], with α = 10 and M = FFT size to weigh
the lower partials more than the higher partials (which may
be spurious and noisy).

w(n) = exp

(−0.5αn

M − 1

)
(19)

Peaks in the magnitude spectrum typically represent
harmonics, and the differences between their frequencies
should remain constant. We utilize this fact and find the
mode of the difference between the adjacent frequencies of
the NP peaks, and use that to detect fundamental frequency
and set that as the initial F0 estimate, f̂0. The amplitude, â0,
and phase, φ̂0 are found by quadratically interpolating the
magnitude and phase spectrum around the peak at estimated
F0. The initial state and error covariance matrix are

x̂1|0 =

⎡
⎢⎣ e(2πj f̂0Ts)

â0e(2πj f̂0Ts+ j φ̂0)

â0e(−2πj f̂0Ts− j φ̂0)

⎤
⎥⎦

P̂1|0 = E[(x1 − x̂1|0)(x1 − x̂1|0)∗T] = 0

(20)

2.2.2 Detecting Harmonic Change
To detect harmonic change we need to keep track of both

the previous frame and the current frame. We find the NP
largest peaks in the magnitude spectra of the consecutive
frames. For frames k − 1 and k, the NP peak frequencies
can be represented as [f1, k−1, f2, k−1, · · · fNP,k−1] and [f1, k,
f2, k, · · · fNP,k] respectively. We then find the first order
difference between adjacent peaks in frames k and k − 1 .
This typically represents the fundamental frequency.

fi+1,k − fi,k = di,k ∀ i = 1, · · · , N P − 1 (21)

We calculate the mode of the distribution given by

m = max
i

| di,k − di,k−1 | (22)

The fundamental frequency deviation among consecutive
frames is calculated in cents as

f 0dev = 1200 log2

(
f̂0

f̂0 + m

)
(23)

where f̂0 is the calculated initial fundamental frequency.
If the same note is being played in the current frame and
the previous frame, then m would typically be zero. If there
is a large enough frequency deviation between consecutive
frames, i.e., f0dev ≥ nst (specified in number of semitones),
then the filter is re-initialized with a null covariance matrix
and the estimated initial state.

We show the detected peaks in two consecutive frames
when there is a harmonic change, along with a histogram
of frequency deviation between them in Fig. 2.

2.3 Backtracking to Avoid Transient Errors
For an instrument with a strong transient attack, such as

a guitar or a piano, the F0 estimation is likely to fail during
a note change. This is because the transient is broadband
noise-like in nature and the frequency peaks do not have
harmonic relationships between them. To avoid this, when-
ever there is a transition from a silent to a non-silent frame

Table 1. Pitch detection errors with frequency modulated
sawtooth wave

SNR Mean Absolute Error (Hz) Standard Deviation (Hz)

5 5.5673 19.0500
10 5.6536 19.0715
15 5.7145 19.0937
20 5.9741 19.3449

or whenever a harmonic change is detected, a few frames
are skipped before estimating the initial state. The number
of frames to skip depends on the instrument whose pitch is
to be tracked. Once a stable F0 estimate is found, the filter is
initialized with that estimate, and we backtrack the number
of frames we skipped and start tracking the pitch. This in-
troduces latency (which can be up to 130 ms depending on
the number of frames skipped) but ensures that an accurate
pitch is detected for all frames in the signal.

2.4 Adaptive Process Noise
We only reset the covariance matrix when there is a

transition from silent to non-silent frame or when a new
note with a different pitch is played. However, dynamics
such as vibrato also need to be captured. To track these
changes, σ2

w in Eq. (12) is modeled as the process noise
variance.

log10 (σ2
w) = −c + |yk − H x̂k|k | (24)

where c ∈ Z
+ is a constant. The term yk − H x̂k|k is known

as the innovation. It gives the error between our predicted
value and the actual data. Whenever the innovation is high,
there is a significant discrepancy between the predicted
output and the input, which is probably caused by a change
in the input that the ECKF needs to track. In that case,
σ2

w increases and there’s a term added to the a posteriori
error covariance matrix P̂k|k+1. This increase in the error
covariance matrix causes the Kalman gain Kk to increase
in the next iteration according to Eq. (8). As a result, the
next state estimate x̂k|k+1 depends more on the input and
less on the current predicted state x̂k|k . Thus, the innovation
reduces in the next iteration and so does σ2

w. In this way,
the process noise acts as an error correction term that is
adaptive to the variance in input.

3 RESULTS

The MATLAB code for the following examples is available
at https://github.com/orchidas/Pitch-Tracking.

3.1 Synthesized Signal
We test our pitch estimator on an artificially synthesized

signal—a sawtooth wave at 440 Hz, with a sinusoidal vi-
brato of frequency 5 Hz, with added white noise at dif-
ferent SNRs. The results showing the mean absolute error
and standard deviation are given in Table 1. The tracked
pitch lags slightly behind the actual pitch as observed in
Fig. 3. Higher variance of detected pitch is caused by rapid
fluctuations of estimated pitch about a mean value.

J. Audio Eng. Soc., Vol. 68, No. 1/2, 2020 January/February 81

DAS ET AL. PAPERS

Fig. 2. Different notes played in consecutive frames (dashed line—previous frame, solid line—current frame). On the right is a histogram
of the distribution given by Eq. (22).

Fig. 3. Tracking pitch in a sawtooth wave with 5 Hz sinusoidal
vibrato. Dashed line—actual pitch, solid line—ECKF detected
pitch.

3.2 Tracking Dynamic Note Changes
To address the main drawback of [1], we track ECKF

pitch trajectories for rapid note changes. The results are
shown in Fig. 4, where the spectrogram of the fundamental
is plotted, along with the estimated pitch trajectory with a
black solid line. The trajectory is smooth and accurate and
follows the changing notes without any significant lag.

3.3 Tracking Ornaments
One of the potential applications of a sample-by-sample

pitch tracker is to get smooth trajectories of ornaments
and embellishments. We track portamento (smooth glide
from one note to another), vibrato (frequency modula-
tion), and trill (hammering on adjacent note) on two string
instruments— the double bass and electric guitar. Tracking
pitch in a bowed string instrument such as the double-bass
is easier, since it is a driven oscillator, whereas a plucked
string instrument will have a strong transient where pitch
detection goes haywire. We recorded the samples into Au-
dacity through a TASCAM 2x2 interface using a Beyer
Dynamic omni mic and direct line input at a sampling rate
of 48 kHz. The results comparing the ECKF pitch tracker
to YIN and CREPE are shown in Fig. 5. There is an over-
shoot/undershoot in the initial pitch detected by the ECKF

Fig. 4. Estimated pitch (in black) for descending fifths played on
the A string on the double bass.

in some plots, but it quickly converges to the correct pitch.
This is due to errors in initial F0 estimation. The ECKF
trajectory is smoother and follows YIN and CREPE tra-
jectories closely in most cases, except in Fig. 5d, where
the YIN pitch trajectory becomes unstable, and in Fig. 5f,
where it slightly lags behind the YIN and CREPE trajecto-
ries.

3.4 Tracking Singing Voice
Putting it all together, we compare the performance of our

proposed pitch tracker against YIN and CREPE in a real-

82 J. Audio Eng. Soc., Vol. 68, No. 1/2, 2020 January/February

PAPERS ECKF PITCH TRACKING

Fig. 5. Estimated pitch for various ornaments played on the guitar. Circles—YIN, Diamonds—CREPE, Black line—ECKF.

Fig. 6. Pitch track of a female voice excerpt singing with vibrato from VocalSet. Circles—YIN, Diamonds—CREPE, Black line—ECKF.

J. Audio Eng. Soc., Vol. 68, No. 1/2, 2020 January/February 83

DAS ET AL. PAPERS

world example. We use a track from the VocalSet dataset
[24]: a female soprano singer singing an excerpt from the
song “Row your boat gently down the stream” with vibrato.
The results are given in Fig. 6. The pitch track generated by
ECKF is comparable to that of CREPE. It is more densely
sampled (one f0 estimate per sample), with the additional
advantage of recovering the amplitude envelope and the
phase track of the fundamental. Essentially, with the ECKF
pitch tracker, we can extract the fundamental waveform
from the rest of the signal2. This is an advantage it has over
other pitch trackers proposed in the literature. The run-times
in ascending order are YIN, ECKF, and CREPE.

4 DISCUSSION

The proposed improved ECKF pitch tracker gives a
sample-by-sample pitch estimate, along with amplitude en-
velope and phase, which yields the extracted fundamen-
tal. The smooth pitch trajectory obtained could be used to
make subtle pitch corrections during the mixing process.
Although the Kalman filter is inherently robust to the pres-
ence of observation noise, it affects the accuracy of the F0
estimate calculated to reset the filter. Moreover, a number
of parameters need to be carefully selected, depending on
the type of instrument whose pitch is to be tracked.

4.1 Selection of Parameters
The following parameters need to be carefully selected

for optimum results with the ECKF pitch tracker.

• Frame size. For tracking very fast pitch changes,
frame size should be small. However, choosing a
shorter frame would lead to errors in initial F0 esti-
mation. Therefore, it is a trade-off. In this paper we
chose a frame size of 2048 samples.

• Number of peaks (NP). The number of peaks used
to calculate an initial F0 estimate and detect har-
monic change depends on the instrument whose
pitch is to be tracked. If the partials are harmoni-
cally related, then a large number of peaks would
give a more stable estimate. However, if the partials
are inharmonic, then selecting a small NP works
better. In this paper we picked NP = 5 or 6 for the
double bass signals and NP = 2 or 3 for guitar, and
NP = 4 for vocal signals.

• Number of frames to skip during transient. If the
instrument to be tracked has a strong attack, such
as a piano or a guitar, then more frames need to be
skipped before initial pitch is calculated from the
steady state. This introduces latency. However, for
instruments with a softer attack, such as woodwind
instruments, skipping one frame should be adequate
in getting a good initial estimate. In this paper the
number of frames to be skipped ∈ [1, 3].

• Adaptive process noise coefficient (c). This coeffi-
cient determines how smooth the pitch trajectory is.

2Sound examples are available at https://ccrma.stanford.edu/
∼orchi/Kalman_pitch/EKF.html

A higher value of this coefficient reduces the pro-
cess noise variance σ2

w and gives a smoother pitch
trajectory. In this paper c ∈ [7, 11].

• Harmonic change threshold. The threshold beyond
which a harmonic change is detected, nst, is specified
in number of semitones (nst = 2 is default and indi-
cates a whole tone). Small fluctuations in pitch can
be tracked by the ECKF, but for larger fluctuations
the filter needs to be reset. In case of discrete pitch
trajectories, such as in guitar and piano, a smaller
value of nst (quarter or eighth tone) works better,
whereas for more continuous trajectories, like vocal
or bowed string instruments, nst should be equal to a
few semitones.

5 SUMMARY

In this paper we have improved upon the proposed
Kalman filter based pitch tracker in [1]. The ECKF pitch
tracker gives a sample-by-sample estimate of the funda-
mental frequency, amplitude, and phase and is robust to
the presence of measurement noise. We have discussed in
detail when and how to reset the filter so that fast note
changes as well as ornaments and embellishments can be
tracked. We have compared the performance of the pitch
tracker to YIN and CREPE pitch detectors and found the
results to be comparable. Additionally, this method has
the ability to extract the fundamental from the waveform of
the signal as it yields the amplitude envelope and a phase
track, along with the pitch track. However, parameter selec-
tion for the ECKF pitch tracker requires knowledge of the
type of signal whose pitch is to be tracked. That is a potential
drawback of this method. In future, it would be interesting
to automatically pick the optimum set of parameters given
an audio signal by training on instrument-specific datasets.

6 ACKNOWLEDGMENT

Part of this research was conducted at the Sound
Analysis-Synthesis team at IRCAM during a residency at
the Cité Internationale des Arts, Paris, in early 2019. The
authors would like to thank Axel Röebel, who heads the
Analysis-Synthesis team at IRCAM.

7 REFERENCES

[1] O. Das, J. O. Smith, and C. Chafe, “Real-Time Pitch
Tracking in Audio Signals with the Extended Complex
Kalman Filter,” Int. Conf. on Digital Audio Effects (DAFx
17), pp. 118–124 (2017).

[2] J. C. R. Licklider, “A Duplex Theory of Pitch Per-
ception,” J. Acoust. Soc. Amer., vol. 23, no. 1, pp. 147–147
(1951).

[3] D. Gerhard, “Pitch Extraction and Fundamental Fre-
quency: History and Current Techniques,” Tech. Rep., Uni-
versity of Regina (2003).

[4] A. De Cheveigné and H. Kawahara, “YIN, a Fun-
damental Frequency Estimator for Speech and Music,” J.
Acoust. Soc. Amer., vol. 111, no. 4, pp. 1917–1930 (2002).

84 J. Audio Eng. Soc., Vol. 68, No. 1/2, 2020 January/February

PAPERS ECKF PITCH TRACKING

[5] A. M. Noll, “Cepstrum Pitch Detection,” J. Acoust.
Soc. Amer., vol. 41, pp. 293–309 (1967).

[6] A. M. Noll, “Pitch Determination of Human Speech
by the Harmonic Product Spectrum, the Harmonic Sum
Spectrum, and a Maximum Likelihood Estimate,” Proceed-
ings of the Symposium on Computer Processing Communi-
cations, vol. 779 (1969).

[7] J. A. Moorer, “On the Transcription of Musical
Sound by Computer,” Computer Music J., vol. 1, no. 4,
pp. 32–38 (1977 Nov.).

[8] J. Wise, J. Caprio, and T. Parks, “Maximum Likeli-
hood Pitch Estimation,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 24, no. 5, pp. 418–423
(1976).

[9] E. Barnard, R. A. Cole, M. P. Vea, and F. A. All-
eva, “Pitch Detection with a Neural-Net Classifier,” IEEE
Transactions on Signal Processing, vol. 39, no. 2, pp. 298–
307 (1991).

[10] J. W. Kim, J. Salamon, P. Li, and J. P. Bello,
“CREPE: A Convolutional Representation for Pitch Es-
timation,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 161–165
(2018).

[11] F. Bach and M. Jordan, “Discriminative Training of
Hidden Markov Models for Multiple Pitch Tracking,” pre-
sented at the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 5 (2005).

[12] M. Mauch and S. Dixon, “pYIN: A Fundamental
Frequency Estimator Using Probabilistic Threshold Dis-
tributions,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 659–663
(2014).

[13] L. Shi, J. K. Nielsen, J. R. Jensen, M. A. Little, and
M. G. Christensen, “A Kalman-Based Fundamental Fre-
quency Estimation Algorithm,” IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics (WAS-
PAA), pp. 314–318 (2017).

[14] T. Tolonen and M. Karjalainen, “A Computationally
Efficient Multipitch Analysis Model,” IEEE Transactions
on Speech and Audio Processing, vol. 8, no. 6, pp. 708–716
(2000).

[15] P. De La Cuadra, A. S. Master, and C. Sapp, “Ef-
ficient Pitch Detection Techniques for Interactive Music,”
presented at the International Computer Music Conference
(ICMC) (2001).

[16] P. K. Dash, G. Panda, A. Pradhan, A. Routray,
and B. Duttagupta, “An Extended Complex Kalman Filter
for Frequency Measurement of Distorted Signals,” Power
Engineering Society Winter Meeting, 2000. IEEE, vol. 3,
pp. 1569–1574 (2000).

[17] P.-C. Li, L. Su, Y.-h. Yang, A. W. Su, et al., “Anal-
ysis of Expressive Musical Terms in Violin Using Score-
Informed and Expression-Based Audio Features,” ISMIR,
pp. 809–815 (2015).

[18] M. Boutayeb, H. Rafaralahy, and M. Darouach,
“Convergence Analysis of the Extended Kalman Fil-
ter Used as an Observer for Nonlinear Determin-
istic Discrete-Time Systems,” IEEE Transactions on
Automatic Control, vol. 42, no. 4, pp. 581–586
(1997).

[19] X. Serra and J. Smith, “Spectral Modeling Synthe-
sis: A Sound Analysis/Synthesis System Based on a Deter-
ministic Plus Stochastic Decomposition,” Computer Music
J., vol. 14, no. 4, pp. 12–24 (1990).

[20] G. A. Terejanu, “Extended Kalman Filter Tutorial,”
Tech. Rep., University of Buffalo (2008).

[21] P. Welch, “The Use of Fast Fourier Transform for
the Estimation of Power Spectra: A Method Based on
Time Averaging over Short, Modified Periodograms,” IEEE
Transactions on Audio and Electroacoustics, vol. 15, no. 2,
pp. 70–73 (1967).

[22] A. Gray and J. Markel, “A Spectral-Flatness Mea-
sure for Studying the Autocorrelation Method of Linear
Prediction of Speech Analysis,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 22, no. 3,
pp. 207–217 (1974).

[23] J. O. Smith III, Spectral Audio Signal Processing
(W3K Publishing, 2011).

[24] J. Wilkins, P. Seetharaman, A. Wahl, and B. Pardo,
“VocalSet: A Singing Voice Dataset,” International Sympo-
sium on Music Information Retrieval (ISMIR), pp. 468–474
(2018).

J. Audio Eng. Soc., Vol. 68, No. 1/2, 2020 January/February 85

DAS ET AL. PAPERS

THE AUTHORS

Orchisama Das Julius O. Smith Chris Chafe

Orchisama Das received the B. Eng. degree in Instrumenta-
tion and Electronics engineering from Jadavpur University,
India, in 2016. She is currently a Ph.D. candidate at the
Center for Computer Research in Music and Acoustics at
Stanford University. She is also a teaching assistant for
various signal processing courses at CCRMA. In 2015,
Orchisama worked at the University of Calgary funded
by a Mitacs Globalink fellowship. She interned at Tesla
Motors in 2018 doing DSP for the Noise, Vibration and
Harshness team. In 2019 she was a visiting researcher in
the Sound Analysis-Synthesis team at IRCAM.

•
Julius O. Smith received the B.S.E.E. degree from Rice

University, Houston, TX, in 1975 (control, circuits, and
communication). He received the M.S. and Ph.D. degrees
in E.E. from Stanford University, Stanford, CA, in 1978
and 1983, respectively. His Ph.D. research was devoted to
improved methods for digital filter design and system iden-
tification applied to music and audio systems. From 1975
to 1977 he worked in the Signal Processing Department
at ESL, Sunnyvale, CA, on systems for digital commu-
nications. From 1982 to 1986 he was with the Adaptive
Systems Department at Systems Control Technology, Palo
Alto, CA, where he worked in the areas of adaptive fil-
tering and spectral estimation. From 1986 to 1991 he was
employed at NeXT Computer, Inc., responsible for sound,
music, and signal processing software for the NeXT com-
puter workstation. After NeXT, he became an Associate

Professor at the Center for Computer Research in Music
and Acoustics (CCRMA) at Stanford, teaching courses and
pursuing research related to signal processing techniques
applied to music and audio systems. Continuing this work,
he is presently Professor of Music and (by courtesy) Elec-
trical Engineering at Stanford University. For more infor-
mation, see http://ccrma.stanford.edu/∼jos/.

•
Chris Chafe is a composer, improvisor, and cellist de-

veloping much of his music alongside computer-based re-
search. He is Director of Stanford University’s Center for
Computer Research in Music and Acoustics (CCRMA).
At IRCAM (Paris) and The Banff Centre (Alberta), he
pursued methods for digital synthesis, music performance,
and real-time internet collaboration. Online collaboration
software including jacktrip and research into latency fac-
tors continue to evolve. An active performer either on the
net or physically present, his music reaches audiences in
dozens of countries and sometimes at novel venues. A si-
multaneous five-country concert was hosted at the United
Nations a decade ago. Gallery and museum music instal-
lations involve “musifications” resulting from collabora-
tions with artists, scientists, and MD’s. Recent work in-
cludes the Brain Stethoscope project, PolarTide for the
Venice Biennale, Tomato Quintet for the transLife:media
Festival at the National Art Museum of China,
and Sun Shot played by the horns of large ships in the
port of St. Johns, Newfoundland.

86 J. Audio Eng. Soc., Vol. 68, No. 1/2, 2020 January/February

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

